Uniqueness of CP Decomposition of Tensors
Uniqueness of CP Decomposition
From Sidiropoulos 2000, for an order-$d$ $n\times\cdots\times n$ tensor $T$, suppose there’re $d$ $n\times f$ matrices $A$, $B$, …, $\Phi$, $A=\begin{pmatrix}a_1&\ldots&a_f\end{pmatrix}$, …, $\Phi=\begin{pmatrix}\phi_1&\ldots&\phi_f\end{pmatrix}$, such that
\[T=\sum_{i=1}^f a_i\cdots\phi_i.\]This decomposition is unique up to scaling and permutation of columns in $A$, …, $\Phi$ if
\[k_A+\cdots+k_{\Phi}\ge 2f+(d-1),\]where $k_{\cdot}$ is the Kruskal rank of a matrix.
As a special case, if the Kruskal ranks are all equal, then each one has to satisfy
\[k_{\cdot}\ge\frac{2}{d}f+\left(1-\frac{1}{d}\right).\]Kruskal Rank of Matrix
The Kruskal rank of $A$
\[k_A=\max_r\lbrace r: \text{every }r\text{ columns are linearly indepedent}\rbrace.\]References
Sidiropoulos, Nicolas D., and Rasmus Bro, On the uniqueness of multilinear decomposition of $N$-way arrays, 2000