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70th anniversary of publication: Warren 
McCulloch & Walter Pitts - A logical calculus 

of the ideas immanent to nervous activity 

Vladimír KVASNIČKA a Jiří POSPÍCHAL1 
 
 

Abstract. In 1943 was published a paper of Warren McCulloch & 
Walter Pitts  entitled „A logical calculus of the ideas immanent to 
nervous activity“, which is now considered as one of the seminal 
papers that initiated the formation of artificial intelligence and 
cognitive science. In this paper, concepts of logical (threshold) 
neurons and neural networks were introduced. There was proved that 
an arbitrary Boolean function may be represented by a feedforward 
(acyclic) neural network composed of threshold neurons, i. e. this type 
of neural network is a universal approximator in the domain of 
Boolean functions. Later, S. Kleene and N. Minsky extended this 
theory by a study of relationships between neural networks and finite 
state machines (Mealy automata). They proved two important 
theorems. The first one claims that for an arbitrary neural network 
(composed of logical neurons) there exists an equivalent finite state 
machine. In a similar way, the second theorem claims that for an 
arbitrary finite state machine there exists an equivalent recurrent 
neural network. From these important properties it immediately 
follows that symbolic and subsymbolic approaches to the study of 
cognitive properties of human mind are mutually equivalent.   

 

1 Introduction and basic concepts  

Logical neurons and neural networks  were initially studied in 1943 by Warren 
McCulloch and Walter Pitts´s paper [6] „A logical calculus of the ideas 
immanent to nervous activity", which is considered as a milestone of 
connectionist metaphor in artificial intelligence and cognitive science. This 
paper demonstrated that neural networks are universal approximators for a 
domain of Boolean functions, i. e. an arbitrary Boolean function can be 
represented by a feedforward neural network composed of threshold neurons. 
But, we have to mention from the very beginning that this work is very difficult 
to read, its mathematical-logical part was probably written by Walter Pitts, who 
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was in both sciences total autodidact. Thanks to logician S. Kleene [3] and 
computer scientist M. Minsky [7,8] this work has been “translated” at the end 
of fifties into a form using standard language of contemporary logic and 
mathematics and its important ideas became generally available and accepted.  
 

     
Figure 1. Warren McCulloch (1889 - 1969 ) and Walter Pitts (1923 - 1969) 

 
An elementary unit of neural networks is threshold (logical) neuron of 

McCulloch and Pitts. It has two binary values (i. e. either state 1 or state 0). It 
may be interpreted as a simple electrical device - relay. Let us postulate that 
a dendritic system of threshold neuron is composed of excitation inputs 
(described by binary variables x1, x2, ..., xn, which amplify an output response) 
and inhibition inputs (described by binary variables xn+1, xn+2, ..., xm, which are 
weakening an output response), see fig. 2. 
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Figure 2. Diagrammatic visualization of McCulloch and Pitts neuron, which is composed of 
dendritic system for information input (excitation or inhibition) activities, and axon for 
information output. A body of neuron is called the soma, it is specified by a threshold coefficient 
ϑ. 
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An activity of threshold neuron is set to one, if the difference between a 
sum of excitation input activities and a sum of inhibition activities is greater 
than or equal to the threshold coefficient ϑ, otherwise it is set to zero  
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If we introduce a simple step function  
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then an output activity may be expressed as follows: 
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                                     (2b) 

An entity ξ is called the internal potential. This relation (2) may be alternatively 
interpreted such that excitation activities are incoming to the neuron through 
connections evaluated by positive unit weight coefficients (w = 1), whereas 
inhibition activities are incoming through connections evaluated by negative 
unit weight coefficients (w = -1). Then an activity of neuron may be expressed 
by a simple formula  
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                                 (3) 

where weight coefficients are specified by 
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                       (4) 

In a neural network, weight coefficients are fixed and they are determined by 
a topology of syntactic tree, which specifies a given Boolean function. 

 Let us note that the above mentioned simple principles (1-4) “all or 
none” for neurons have originated in late twenties and early thirties of former 
century by English physician and electro-physiologist Sir E. Adrian, when he 
studied output neural activities by making use, in that time, of very modern 
electronic equipment based on electron-tube amplifiers and cathode-ray tubes 
for a visualization of measurements.   

In the original paper McCulloch and Pitts [6] have discussed 
a possibility that inhibition is absolute, i. e. any active inhibitory connection 
forces the neuron into the inactive state (with zero output state). The paper itself 
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shows that this form of inhibition is not necessary, and that „subtractive 
inhibition“ based on formulae (1-4) gives the same results.    

Simple implementations of elementary Boolean functions of 
disjunctions, conjunctions, implication, and negation are presented in fig. 3. Let 
us study a function of disjunction for n = 2, if we use formulae (1-2) we get  

( ) ( )1 2 1 2 1ORy x ,x s x x= + −                                                (5) 
Functional values of this Boolean function are specified in tab. 1. It immediately 
follows from this table that a function yOR simulates Boolean function of 
disjunction 
 

Table 1. Disjunctive Boolean function 
# x1 x2 yOR(x1,x2) x1∨ x2 
1 0 0 s(-1) 0 
2 0 1 s(0) 1 
3 1 0 s(0) 1 
4 1 1 s(1) 1 
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x1

y = x ... x1∨ ∨ n y = x ... x1∧ ∧ n

y = x x1 2⇒

xn

1 n

0

Boolean function 
of disjunction

......

x1

xn

y y

y

y = x¬

0x y
x1

x2

Boolean function 
of conjuction

Boolean function 
of implication

Boolean function 
of negation

 
 
Figure 3. Three different implementations of threshold neurons, which specify Boolean 
functions of disjunction, conjunction, implication, and negation, respectively. Excitatory 
connections are terminated by black dot whereas inhibition connections by open dots.  
 
 
2 Boolean functions 
Each Boolean function [5,8] is represented by a syntactic tree (derivation tree), 
which represents a way of its recurrent building, going bottom up, initiated by 
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Boolean variables and then terminated (at a root of tree) by a composed 
Boolean function (formula of propositional logic), see fig. 4, diagram A. 
Syntactic tree is a very important notion for a construction of its subformulae, 
each vertex of tree specifies a subformula of the given formula: lowest placed 
vertices are assigned to trivial subformulae p and q, forthcoming two vertices 
are assigned subformulae p q⇒  and  p q∧ , highest placed vertex – root of the 
tree – is represented by the given formula ( ) ( )p q p q⇒ ⇒ ∧ .    
 

p q p q p q p q

0

0 2

A B  
Figure 4. (A) Syntactic tree of a Boolean function (propositional formula) ( ) ( )p q p q⇒ ⇒ ∧ . 
Bottom vertices correspond to Boolean variables (propositional variable) p and  q, vertices from 
the next levels are assigned to connectives implication and conjunction, respectively. An 
evaluation of the syntactic tree runs bottom up. (B) Neural network composed of logical 
neurons of connectives, which appear in a given vertex of the syntactic tree of diagram A. We 
see that between syntactic tree and neural network these exists very closed one-to-one 
correspondence, their topologies are identical, they are different only in vertices. Pictorially 
speaking, we may say that a neural network representing a Boolean function ϕ can be 
constructed from its syntactic tree by direct substitution of its vertices by proper logical 
neurons.  
 
 We see that for an arbitrary Boolean function we may simply construct a 
neural network, which simulates functional value of the Boolean function, see 
fig. 4, where this process is outlined for formula ( ) ( )p q p q⇒ ⇒ ∧ . It means 
that these results may be summarized in a form of a theorem. 
 
Theorem 1. Each Boolean function, represented by a syntactic tree, can be 
alternatively expressed in a form of neural network composed of logical 
neurons that correspond to connectives from the given formula. 
 

This theorem belongs to basic results of the seminal paper of McCulloch 
and Pitts [xx].  It claims that an arbitrary Boolean function represented by a 
syntactic tree, may be expressed in a form of neural network composed of 
simple logical neurons that are assigned to logical connectives from the tree. It 
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means that neural networks with logical neurons are endowed by an interesting 
property that these networks have a property of universal approximator in a 
domain of Boolean functions. The above outlined constructive approach based 
on an existence of syntactic tree for each Boolean function is capable of 
accurate simulation of any given Boolean function. 

 

 
Figure 5. A logic neuron for simulation of an arbitrary conjunctive clause, which is composed 
of propositional variables or their negations that are mutually connected by conjunctions, 

1 1n n my x ... x x ... x+= ∧ ∧ ∧ ¬ ∧ ∧ ¬ .  
 

 Architecture of neural network based on the syntactic tree, which is 
assigned to an arbitrary Boolean function, may be substantially simplified to the 
so-called 3-layer neural network composed of  

(1) a layer of input neurons (which copy input activities, they are not 
computational units),   

(2) a layer of hidden neurons, and  
(3) a layer of output neurons;  

where neurons from two juxtaposed layers are connected by all possible ways 
by connections. This architecture is a minimalistic and could not be further 
simplified. We demonstrate a constructive way how to construct such a neural 
network for an arbitrary Boolean function. 
 Applying simple generalization of the concept of logical neuron, we 
may immediately show that a single logical neuron is capable of simulating a 
conjunctive clause 1 1n n mx ... x x ... x+∧ ∧ ∧ ¬ ∧ ∧ ¬ , see fig. 5. This Boolean 
function is true only for variables satisfying 1 1nx ... x= = =  and 

1 0n mx ... x+ = = = , for all other cases of variables its truth value is 0 (false) 

( )
( )
( )

0
1 1

0

1

0n n m

pre
val x ... x x ... x

preτ +

τ = τ⎧⎪∧ ∧ ∧ ¬ ∧ ∧ ¬ = ⎨
τ ≠ τ⎪⎩

                        (6) 

where ( )0 1 11 1 0 0n n mx ,...,x ,x ,...,x+τ =  is a specification of truth values of 
variables.  It can be easily verified that this conjunctive clause is simulated by 
logical neuron illustrated in fig. 5, its output activity is determined by simple 
formula  
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               ( )1 1n n my s x ... x x ... x n+= + + − − − −                                     (7) 
Its functional value is equal to 1 if and only if   

1 1n n mx ... x x ... x n++ + − − − ≥                                           (8) 
This simple condition is achieved if the first n input (excitation) variables are 
equal to 1 and further (m-n) input (inhibition) variables are equal to 0.  
 

Table 2. Functional values of  a Boolean function.  

# x1 x2 x3 ( )1 2 3y f x ,x ,x= clause 
1 0 0 0 0 - 
2 0 0 1 0 - 
3 0 1 0 1 1 2 3x x x¬ ∧ ∧ ¬

4 0 1 1 1 1 2 3x x x¬ ∧ ∧  
5 1 0 0 0 - 
6 1 0 1 1 1 2 3x x x∧ ¬ ∧  
7 1 1 0 0 - 
8 1 1 1 0 - 

 
In the theory of Boolean functions is proved very important theorem that 

each Boolean function may be equivalently written in a form of disjunctive 
normal form [5,8] 

( )( )

( ) ( ) ( )
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1
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x x ... x

τ

τ τ τ

τ
ϕ =

ϕ = ∧ ∧ ∧Î                                          (9) 

where  

( ) ( )( )
( )( )

if 1
if 0

i i
i

i i

x val x
x

x val x
τ τ

τ

⎧ =⎪= ⎨¬ =⎪⎩
                                           (10) 

In order to illustrate this theorem let us study a Boolean function with 
functional values specified in tab. 2, where in its rows 3, 4 and 6 are "one" (true) 
values and in all other rows the function is false. Applying formula (9) we get an 
„analytic“ form of the given Boolean function specified initially by tab. 2 

( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 1 2 3y f x ,x ,x x x x x x x x x x= = ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧                 (11) 
This Boolean function may be further simplified in such a way that the first and 
second clauses are simplified  

( ) ( ) ( )1 2 3 1 2 3 1 2 3 3 1 2

1

x x x x x x x x x x x x∧ ∧ ∨ ∧ ∧ = ∧ ∧ ∨ = ∧
14243

                     (12) 

Then a final “analytic” form of the studied Boolean function is  
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( ) ( ) ( )1 2 3 1 2 1 2 3y f x ,x ,x x x x x x= = ∧ ∨ ∧ ∧                                 (13) 

 Summarizing our considerations, a clause ( ) ( ) ( )
1 2 nx x ... xτ τ τ∧ ∧ ∧  may be 

expressed by single logical neuron, see fig. 5. Outputs from these neurons are 
mutually connected by a neuron, which represents a disjunction (see fig. 3). A 
final form of the Boolean function (11) is outlined in fig. 6. Results of this 
illustrative example may be summarized in a form of the following theorem. 
 
Theorem 2.  An arbitrary Boolean function f can be simulated by a  3-layer 
neural network. 
 

y1

1

2

2

y1

x1

1

2

x2

x3

x1

x2

x3

 
 
Figure 6. The 3-layer neural network, which simulates Boolean function specified by tab. 2, 
hidden neurons represent single conjunctive clauses specified in tab. 2, their disjunction is 
realized by single output “disjunctive” neuron. This neural network may be further simplified in 
such a way that the first two clauses are combined into a simpler conjunctive clause, see (12-13). 
 

....
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Figure 7. A schematic outline of 3-layer neural network. Going from the left to right, first 
comes an input layer, which is not a calculating device. The second layer is composed of hidden 
neurons, which represent single conjunctive clauses of the given Boolean function. The third 
(last) layer is composed of single output neuron, which performs an addition (disjunction) of 
activities produced by hidden neurons. 
 
A general form of the 3-layer neural network is illustrated by fig. 7. 
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We have to note, that according to the theorem 2, the 3-layer neural 
networks composed of logical neurons are a universal computational device for 
a domain of Boolean function; each Boolean function may be represented by 
this “neural device” called the neural network. This fundamental result of 
McCulloch and Pitts’ paper [6] preceded modern result from the turn of the 
eighties of last century, after which 3-layer feed-forward neural networks with a 
continuous activation function are a universal approximator of continuous 
functions specified by a table of functional values [3,12,13]. Moreover, since the 
proof of theorem 2 was realized in a constructive manner, we know a simple 
systematic approach how to construct this neural network for an arbitrary 
Boolean function. Unfortunately, an optimal form of the constructed neural 
network is not solved by the theorem 2. In general, there may exist a neural 
network composed of smaller number of hidden neurons than the one 
constructed in the systematic manner from the proof of theorem 2. In the theory 
of Boolean function, many optimization methods have been elaborated to 
achieve a “minimal” form of the given Boolean function (e. g. Quin and 
McCluskey’s method [5]). If  such an optimization technique is applied in our 
considerations how to construct a neural network for an arbitrary Boolean 
function, we arrive at an interesting constructive method that produces neural 
network composed of minimal number of logical neurons.  

 

x1

x2

obje 0cts evaluated by 

hyperplane

obje t 1c s evaluated by 

 
Figure 8. An illustrative outline of the concept "linear separability", where round (square) 
objects are separated by a hyperplane w1x1+...+wnxn-ϑ = 0 such that in the first half-space there 
are situated objects of one kind, whereas in the second half-space there are situated objects of 
another kind.  

 
We may put a question what kind of Boolean functions a single logical 

neuron is capable to classify correctly [7,3]? This question may be relatively 
quickly solved by geometric interpretation of computations running in logical 
neuron. In  fact, logical neuron divides an input spaces onto two halfspaces by a 
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hyperplane w1x1 + w2x2 +...+ wnxn = ϑ, for weight coefficients wi=0,±1. Then we 
say that a Boolean function f(x1, x2,..., xn) is linearly separable, if and only if 
there exists such a hyperplane w1x1 + w2x2 + ...+ wnxn = ϑ, which separates a 
space of input activities in such a way that in the first part of space are situated 
objects   evaluated by 0, whereas in the second part of space are situated objects 
evaluated by 1 (see fig. 8). 
 

Theorem 3. Logical neurons are capable to simulate correctly only those
Boolean functions that are linearly separable. 
 
 A classical example of a Boolean function, which is not linearly 
separable is a logical connective "exclusive disjunction", which may be formally 
specified as a negation of a connective of equivalence, ( ) ( )x y x y⊕ ⇔ ¬ ≡ , in 
computer-science literature this connective is usually called the XOR Boolean 
function, ( )XOR x, y x yϕ = ⊕ , its functional values are specified in tab. 3.  

 

Table 3. XOR Boolean function 

# x y ϕXOR (x,y)
1 0 0 0 
2 0 1 1 
3 1 0 1 
4 1 1 0 

 
If we introduce its functional values into a state space x - y we get a diagram 
displayed in fig. 9, which is evidently linearly inseparable.  
 

 
Figure 9. A diagrammatic outline of XOR Boolean function in a state space of its arguments, 
where objects represented by open (filled) circles are evaluated by 0 (1) . We see from the figure 
that there could not exist a straight-line (a hyperplane), which divides the whole plane into two 
sub-planes such that each sub-plane contains two object of the same  kind.  
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Applying a technique from the first part of this chapter, we may construct a 
neural network, which simulates this inseparable Boolean function. From its 
functional values presented in tab. 3 we may directly construct its an equivalent 
form composed of two clauses  

( ) ( ) ( )1 2 1 2 1 2XOR x ,x x x x xϕ = ¬ ∧ ∨ ∧ ¬                                     (14) 
Then this Boolean function is simulated by the following neural network 
displayed in fig. 10. 
 

1

A B

x1

y(01)

x2

1
x1

y(10)

x2

1

1

1

x1

x2

yXOR

C  
Figure 10. Diagrams A and  B simulate single conjunctive clauses from (14). Diagram C 
represents 3-layer neural network, which hidden neurons are taken from diagrams A and B, 
respectively. An output neuron corresponds to a disjunctive connective. 

 
Example 1. Construct a neural network, which simulates an addition of two 
binary numbers: 

1

2

1 2

α
α

β β
 

Single output binary variables are specified by 2 1 2β = α ⊕ α  and 1 1 2β = α ∧ α . If 
we use (14), then the second output variable may be written in a form 

( ) ( )2 1 2 1 2β = ¬α ∧ α ∨ α ∧ ¬α , the corresponding network is displayed in fig. 
11. 
 

 
Figure 11. A neural network, which performs an addition of two one-bit variables. 
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 In the previous part of this Chapter there was demonstrated that a single 
logical neuron is capable to emulate only those Boolean functions that are 
linearly separable. This severe restriction may be removed if we introduce the 
higher-order logical neurons [7], which output activity is specified by a 
generalization of (3) using terms of higher orders 

( )
1 1

n n

i i ij i j
i i , j

i j

y s w x w x x ...
= =

<

ξ

⎛ ⎞
⎜ ⎟
⎜ ⎟

= + + + ϑ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
14444244443

                                (15) 

If an internal potential ξ is determined only as a linear combination of input 
activities (i. e. only by the first summation term), then the logical neuron is a 
standard one and it is called "the first order logical neuron". After Minsky and 
Papert [7], this property of the higher-order neurons may be summarized as a 
theorem. 
 
Theorem 4. An arbitrary Boolean function f is simulated by a logical neuron of 
properly high order. 
 

This theorem claims that each Boolean function may be simulated by a 
single logical neuron of sufficiently high order; there exist such weight 
coefficients and a threshold that for each specification of input 
variables 1 2 nx ,x ,...,x , the calculated output activity is equal to a required value.  

 
Example 2. Let us study, as an illustrative example, the Boolean function XOR, 
which is not linearly separable. Its functional values are presented in tab. 3. Let 
activity of a logical neuron be determined by a quadratic potential (i. e. we 
study a logical neuron of the second order)  

1 1 2 2 12 1 2y s w x w x w x x
ξ

⎛ ⎞
⎜ ⎟= + + − ϑ
⎜ ⎟
⎝ ⎠
144424443

                                      (16) 

For XOR we obtain from single rows in tab. 3 these inequalities 

2

1

1 2 12

0
0
0
0

w
w
w w w

− ϑ <
− ϑ ≥
− ϑ ≥

+ + − ϑ <

                                        (17) 

If we solve successive this system of inequalities, we arrive at a solution  
1 2 121 1 2, w w , wϑ = = = = −                                                       (18) 
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y x x=   1 2⊕x2

x x1 2
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x1

y x x=   1 2⊕x2

x x1 2
1

A B  
Figure 12. (A) A diagrammatic outline of the second-order logical neuron, which simulates 
Boolean function XOR, where excitation input variables are specified by variables x1 and x2, an 
inhibition activity is assigned to a product x1x2. An output activity z is specified by a step 
function ( )1 2 1 22 1z s x x x x= + − − . By direct verification for different values of input activities 
we will see that this single second-order logical neuron simulates the XOR function. A fork of 
inhibitive input means that this input activity is taken into account twice. (B) A transformation 
of logical neuron of the second order, which simulates the connective XOR   (diagram A), onto 
a neural network composed entirely of neurons of the first order. This transformation is based 
on a construction of product x1x2 by making use of single logical neuron (simulating a 
connection of conjunction), an output from this neuron is used as doubled inhibition input for 
the output neuron. Thus derived architecture is probably the simplest possible which may be 
constructed from simple (first order) logical neurons (cf. fig. 9). 
 
 In the example 2 we have shown that linearly inseparable function XOR 
may be implemented by making use of a logical neurons with three inputs  x1, 
x2, and x1x2. In this connection we have to solve an additional problem of 
calculation of the product x1x2, which may be simply performed by a logical 
connective of conjunction, 1 2 1 2x x x x= ∧ . If these operation will be performed 
by a logical neuron of conjunction (see fig. 12, diagram B), then we may create 
the simplest neural network, which is composed of two neurons, where there 
are used only two input activities x1 and x2. It means that a logical neuron of the 
second order is capable to simulate correctly Boolean function XOR, which is 
linearly inseparable in 2-dimensional phase space x1-x2, but it is linearly 
separable in 3-dimensional phase space x1-x2- x1x2 , see fig. 13.  

A concept of linearly separable Boolean function can be easily 
generalized to a quadratic (cubic) separability by making use a concept of 
quadratic (cubic) hypersurface. 
 
Definition 1. A Boolean function f is called quadratic separable if and only if 
there exist such weight coefficients wi, wij, and threshold coefficient ϑ that for 
each specification of variables 1 2 nx ,x ,...,x  the following inequalities are 
satisfied 
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( )
( )
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1 1

1 2
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1

0

n n

req n i i ij i j
i i , j
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∑ ∑
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Figure 13. A diagrammatic representation of XOR Boolean function. (A) If XOR function is 
represented in 2-dimensional state space x1-x2, then objects with unit classification are not 
linearly separable from objects with zero classification. (B) If XOR Boolean function is 
represented in 3-dimensional phase space x1-x2-x1x2 , then there exists a hyperplane, which 
mutually separates objects with different classification. A projection of this hyperplane into a 
plane x1-x2 gives a quadratic curve, which separates objects with different classification, see 
diagram C and D. 
 

The above outlined approach to a study of separability of Boolean 
functions can be generalized in a form of a theorem. 
 
Theorem 5. An arbitrary Boolean function f can be correctly simulated by a 
higher-order logical neuron. 
 
This theorem means that for each specification of variables 1 2 nx ,x ,...,x there 
exist a higher-order logical neuron (i. e. its weight coefficients and threshold 
factor), which correctly specifies the given Boolean function for all possible 
values of its arguments. 
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12
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Figure 14. Oriented connected graphs that represent a topology of neural network. The vertex 
indexed by 1 represents an input neuron, vertices indexed by 2, 3, 4 represent hidden neurons, 
and finally, the vertex indexed by 5 represents an output neuron. Diagram A is an acyclic graph, 
whereas diagram B is a cyclic graph (it was created from the l.h.s. graph by reversing 
orientation of an edge 3-4) .   
 
 
3     Formal specification of neural networks 
From our previous discussion it follows that a concept of neural network 
belongs to fundamental notions of general theory of neural networks (not only 
those networks that are composed of logical neurons). Neural network is 
defined as an ordered triple  

( )G, ,= wN ϑ                                                 (20) 
where G is a connected oriented graph, w is a matrix of weight coefficients, and 
ϑ is a vector of threshold coefficients. 
 Up to now we did not use time information in an explicit form. We 
postulate that time t is a discrete entity and is represented by natural integers. 
Activities of neurons in time t are represented by a vector x(t) , in the time t = 0 
a vector x(0)  specifies initial activities of a given neural network. Relation (4) 
for an activity of the ith neuron in time t is specified by  

( ) ( )1t t
i ij j i

j
x s w x −⎛ ⎞

= − ϑ⎜ ⎟
⎝ ⎠
∑                                         (21) 

where summation runs over all neurons that are predecessors of the ith neuron, 
activities of these neurons are taken in the time t-1. As an example, let us study 
a neural network displayed in fig. 14, where the neural network is specified by 
an acyclic graph, activities of single neurons are determined by (21) as follows:  
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1 1 1
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0
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1

1

t

t t

t t t
max

t t t

t t t t

x external input

x s x

x s x x t , ,...,t

x s x x

x s x x x

−

− −

− −

− − −

=

= − −

= + − =

= − + −

= + + −

                        (22) 

As a side notice, in a consequence of the fact that the neural network is acyclic, 
in the course of calculation of an activity ( )t

ix  we need to know activities of the 
predecessor neurons in the previous time t-1. Neural network N may be 

understood as a function, which maps an activity vector ( )1t−x  in the time t-1 
onto an activity vector ( )tx  in the time t  

( ) ( )( )1t tF ;−=x x N                                                     (23) 

where the function F contains as a parameter the specification N of the given 
network. 
 According to a topology of graphs G from (20), neural networks are 
divided into two big classes: if graph G is acyclic, then the neural network is 
called feedforward, in the opposite case, if graph G is cyclic, then the network is 
called recurrent (see fig. 15). 
 

1

2 3 4

5

0

B

2 1

1

1

2 3 4

5

0

A

2 1

1

 
Figure 15. Neural networks that are both specified by oriented graphs outlined in fig. 14. (A) 
Feedforward neural network specified by the acyclic graph G displayed in fig. 14, diagram A. 
(B) Recurrent neural network  specified by the cyclic graph G displayed in fig. 14, diagram B. 
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 If initial values of activities of neurons indexed by 2-5 for t=1 are zero 
and input activities are specified by a binary vector of length tmax=10 are 
x1=(1101101010), then activities of hidden and output neurons from networks 
specified in fig. 14, diagram A, are presented in the following table for times 
1≤t≤10. 
 
 

t x1 x2 x3 x4 x5 
1 1 0 0 0 0 
2 1 0 0 0 0 
3 0 1 0 0 0 
4 1 1 0 0 1 
5 1 0 1 0 1 
6 0 0 0 0 1 
7 1 1 0 0 0 
8 0 0 1 0 1 
9 1 1 0 1 1 
10 0 0 1 0 1 

 
In general, we may say, that neural network forms a mapping (with parameters 
specified by graph topology G, weight coefficients w, and threshold coefficients 
ϑ) of a sequence of input activities onto a sequence of  output activities 

( ) ( )0001110111 1101101010F , parameters of network=                         (24) 
 Recurrent neural networks [3,12,13] are specified by a cyclic oriented 
graph, see diagram B, fig.  14. In this case we may say that this type of recurrent 
network has a memory. As a consequence of an existence of closed oriented 
cycles in recurrent networks, a repeating character of dependency of some 
activities from other neurons may appear. For instance, in the course of 
calculation of the activity x2 in time t, as a consequence of oriented cycles we 
have to know activities of neurons 1, 2, and 5 in time t-1. Moreover, if we 
calculate an activity x5 in a time t-1, then we must know activities neurons 
indexed by 2 and 4 in time t-2. From this simple discussion it follows that an 
activity of neuron indexed by 5 in time t is determined by previous activities in 
times t-1 and t-2. In forthcoming steps the “window to history” may be 
extended, this fact specific for recurrent networks is called the „the memory of 
recurrent networks “.  
For a similar sequence of input activities as was used in the previous illustrative 
example, x1=(1101101010) and for similar initial activities of other neurons for  
t=1 (activities of neurons 2-5 in t=1 are zero), by using relations (21) we get 
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activities of the neural network for different increasing time, which are outlined 
in the following table. 
 

t x1 x2 x3 x4 x5 
1 1 0 0 0 0 
2 1 0 0 0 0 
3 0 0 0 0 0 
4 1 1 0 0 0 
5 1 0 1 0 1 
6 0 0 1 0 0 
7 1 1 0 1 0 
8 0 0 1 0 1 
9 1 1 0 1 0 
10 0 0 1 0 1 

 
Similarly as in previous example of feedforward neural network (see fig. 15, 
diagram A and eq. (24)), also a recurrent neural network (see fig. 15, diagram B) 
can be interpreted as a mapping of input sequence x1=(1101101010) onto an 
output sequence x5=(0000100101).   
 
 
4 Finite state machine (automaton) [3,7,9] 
A finite state machine is schematically outlined in fig. 16, this machine works in 
discrete time events 1, 2,..., t, t+1,... .  It contains two tapes of input symbols and 
output symbols, respectively, where output symbols are s determined by input 
symbols and internal states s of the machine (see fig. 16) 

( )1t t tstate f state ,input symbol+ =                                      (25a) 

( )1t t toutput symbol g state ,input symbol+ =                           (25b) 
 

where functions  f and g specify the given machine and are considered as its 
basic specification: 
(1) Transition function  f  determines the next state, this is fully specified by 

an actual state and an input symbol, 
(2) Output function g  determines an output symbol, this is fully specified by 

an actual state and an input symbol. 
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101000 11 0 10100 011 0..... ..... .....

s

input symbol output symbol

finite-state machine

machine state

  
Figure 16. A finite state machine works in discrete time steps 1, 2,...,t, t+1, ,... . It contains two 
heads, one for reading of an input symbol and another one for printing of output symbol. In each 
time step t the machine is in specific internal state s, in the forthcoming time step t+1 an internal 
state s is determined by internal state for a time step t and an input symbol also in time step t 
(see relations (26a-b)). 
 
Definition 2. A finite state machine (with an output, called alternatively the 
Mealy automaton) is defined by an ordered 6-tuple ( )iniM S ,I ,O, f ,g ,s= , 

where { }1 mS s ,...,s= is a finite set of internal states, { }1 2 nI i ,i ,...,i= is a finite 

state of input symbols, { }1 2 pO o ,o ,...,o= is a finite set of output symbols, 
:f S I S× →  is a transition function, :g S I O× →  is an output function, and 

inis S∈  is an initial state. 
 

s1 s2start

0/b

0/a

1/a 1/a

 
Figure 17. An example of finite state machine, which is composed of two states, { }1 2S s ,s= , 

two input symbols, { }0 1I ,= , two output symbols, { }O a,b= , and an initial state s1. Transition 
and output functions are specified by tab. 4. 
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Table 4. Transition and output functions of  
a finite state machine displayed in fig. 17. 

 f  g 
transition
function 

output 
function 

 
state 

0 1 0 1 
s1 s2 s1 b a 
s2 s1 s2 a a 

 
Transition and output functions may be used for a construction of a model of a 
finite state machine, see fig. 17. 

Sequences of internal states and output symbols for a finite state 
machine displayed in fig. 16 are determined by tab. 5 for an input sequence of 
symbols (100111010...). This device may be interpreted as a mapping of input 
string of symbols onto output string of symbols  

100111010
input string x output string y

G ...; f ,g abaaaabaa...
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠
1442443 1442443  

where a symbol  in an output string means an “empty token”, symbols of 
output string are shifted by one time step with respect to the input string. A 
mapping G is composed of functions f and g, which specify a „topology“ of the 
finite state machine. For a construction of relationship between neural network 
and finite state machine we specify this approach as follows: Let 

( ) ( ) ( ) ( )1 2 3 ti i i ...i ...=i , ( ) ( ) ( ) ( )2 3 4 1to o o ...o ...+=o , and ( ) ( ) ( ) ( )1 2 3 ts s s ...s ...=s  be strings of 
input symbols, output symbols, and internal states, respectively (see tab. 5). 
Single symbols from these strings are in two mutual relationships (see fig. 18) 

( ) ( ) ( )( )1t t ts f s ,i+ =                                                  (26a) 
( ) ( ) ( )( )1t t to g s ,i+ =                                                  (26b) 

 

f

g

it
ot+1

st+1

st

it

st

 
Figure 18. A diagrammatic outline of finite state machine represented by transition and output 
functions f and g, respectively (see eq. (26a-b)). 
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The first equation (26a) specifies the next internal state s(t+1) by a transition 
function f,  input symbol i(t) , and internal state s(t). In a similar way, the second 
equation (26b) specifies the new output symbol o(t+1) by an output function g, a 
previous internal state s(t), and an output symbol i(t). We say that a neural 
network is equivalent to a finite state machine if and only if responses of both 
devices are identical for the same input. For this equivalence it is not important 
a way of mapping of input symbols onto output symbols, i. e. a type of 
calculation accompanying this transformation, a substantial feature here is an 
equality of output strings for the same input strings for both devices (neural 
network and finite state machine).  
 

Table 5. Sequences of input symbols, internal states, and output  
symbols for a finite state machine displayed in fig. 15. 

input  symbol 1 0 0 1 1 1 0 1 0 .. 
internal state s1 s1 s2 s1 s1 s1 s1 s2 s2 .. 
output symbol  a b a a a a b a a 

 
Proof of this theorem is simple and constructive, we show how we can construct 
for a given neural network single elements from the definition 2, 

( )iniM S ,I ,O, f ,g ,s= . First of all we divide a binary vector of neural-network 
activities x onto a direct sum I H O= ⊕ ⊕x x x x , where its components are 
binary vector of input activities Ix , hidden activities Hx , and output activities 

Ox , respectively.   
(1) The internal-state set S  is composed of all possible binary vectors Hx , 

{ }HS = x . Let the neural network be composed of nH hidden neurons, 

then a cardinality of S is 2 Hn .  
(2) The set of output symbols is composed of all possible binary vectors xI , 

{ }II = x , a cardinality of this set is 2 In , where nI is number of input 
neurons.  

(3) The set of output symbols is composed of all possible binary vectors  
xO ,  { }OO = x , a cardinality of this set is 2 On , where nO is number of 
output neurons.  

Theorem 5 [xx]. Each neural network can be represented by an equivalent finite 
state machine with output. 
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(4) A function :f S I S× →  assigns to each couple of internal state and 
input symbol a new internal state. This function is specified by a 
mapping (23) produced by the given neural network   

( ) ( ) ( )( )1 ;t t t
H I HF+ = ⊕x x x N                                             (27) 

This mapping assigns a new internal state in a time t to a couple 
composed of internal state and input symbol in time t-1. 

(5)  Function :g S I O× →  assigns a new output symbol to each couple of 
internal state and input symbol. This function is specified by a mapping 

( ) ( ) ( )( )1 ;t t t
O I HF+ = ⊕x x x% N                                             (28) 

(6) An initial internal state sini is usually selected such that all activities of 
hidden neurons are vanishing (zero).  

 
Summarizing, for a given neural network we unambiguously specify a 

finite state machine, which is equivalent to the given neural network. This 
means that any neural network may be represented by an equivalent finite state 
machine, Q.E.D. 

A proof of inverse theorem with respect to theorem 5 (i. e. each finite 
state machine may be represented by an equivalent neural network) is not a 
trivial one, the first who proved this inverse form was Minsky in 1967 in his 
famous book "Computation: Finite and Infinite Machines" [7] by making use 
of very sophisticated constructive approach. Our goal is to construct for a 
given finite state machine an equivalent neural network.  

 
Theorem 6 [xx]. Each finite state machine with output (i. e. the Mealy 
automaton) can be represented by an equivalent recurrent neural network. 
 
Example 2. In this example we present a simple illustrative proof of the above 
theorem 6. The constructed neural network will correspond to an example of 
finite state machine with state diagram displayed in fig. 17. This machine is 
determined for transition and output functions (see tab. 4), which may be 
expressed as two Boolean function: 
(1) Transition function ( )1t t tstate f state ,input symbol+ = : 

state,input symbol transition function f 
(s1,0) → (0,0) (b) → (1) 
(s1,1) → (0,1) (a) → (0) 
(s2,0) → (1,0) (a) → (0) 
(s2,1) → (1,1) (a) → (0) 
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(2) Output function ( )1t t toutput symbol g state ,output symbol+ = : 
state, output symbol output function g 

(s1,0) → (0,0) (s2) → (1) 
(s1,1) → (0,1) (s1) → (0) 
(s2,0) → (1,0) (s1) → (0) 
(s2,1) → (1,1) (s2) → (1) 

This means that both functions f and g are specified as Boolean functions 
( )1 2 1 2f x ,x x x= ¬ ∧ ¬  

( ) ( ) ( )1 2 1 2 1 2g x ,x x x x x= ¬ ∧ ¬ ∨ ∧  
A representation of both these functions in a form of neural network composed 
of logical neurons is displayed in fig. 19.  
 

x1 0
x2

f x x( , )1 2

x1

0

x2

2

1 g x x( , )1 2

A B  
 

Figure 19. Boolean functions f and g from example 2. 
 
 

i

0

0

2

1

s

o

 
 
Figure 20. A recurrent neural network, which represents a finite state machine displayed in 
fig. 17. This network was created by a substitution of Boolean functions f and g from fig. 19 to 
diagram displayed in fig. 18.  
 

Let us note that this simple example may serve as a sufficient 
illustrative specification of a way how to produce a constructive proof  of 
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theorem 6, i. e. for any finite state machine (specified by functions f and g) we 
know a way of construction of an equivalent recurrent neural network.  In the 
first step we construct a neural representation of functions f and g by making 
use the method outlined in section 2 for construction of Boolean function. In 
the second step the functions f and g are substituted by their neural 
representations in general diagram displayed in fig. 18, which specifies finite 
state machine. This second step may be understood as a finalization of proof of 
theorem 6, we have demonstrated a constructive method for a construction of 
neural network equivalent to the given finite state machine. 

To summarize our results, we have demonstrated that neural networks 
composed of logical neurons are powerful calculation device: (1) feedforward 
neural networks represented by acyclic graph are a universal approximator of 
Boolean functions and (2) between finite state machine and neural network 
there exists a property of mutual equivalency. An arbitrary finite state machine 
may be simulated by a recurrent neural network, and conversely, an arbitrary 
neural network (feedforward of recurrent) may be simulated by a finite state 
machine. Both these properties have been proved in constructive way, i. e. we 
have an algorithm how to construct another device if we know its counterpart.  
There exists a substantial limitation based on the fact that connection between 
neurons and their specification as excitatory or inhibitory and also values of 
threshold coefficients are specified by an architecture of network. In other 
words, neural networks composed of logical neurons are incapable of learning; 
a Boolean function (or Boolean functions, if neural network has more than one 
output neuron) is fully fixed in the course of its counterpart finding process.  
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Figure 21. (A) A cybernetic interpretation of brain as a device, which transforms input x onto 
output y, where this transformation is affected by internal state s . It means that we may get two 
different responses y1 and y2  on the same input x.  (B) Connectionist (neural) model of the 
brain implemented by a neural network, which is composed of (1) input neurons (e. g. 
perception neurons of eye retina), (2) hidden neurons, which are performing a transformation 
process of input onto output, and (3) output neurons (e. g. neurons controlling motor activities). 
Activities of hidden neurons form internal  states of neural network, different initial values of 
their  activities cause different responses to the same input activity x.   
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5      A view of artificial intelligence and cognitive science on the 
problem of relationship between mind and brain 
In the first part of this section we give a general view of artificial intelligence 
and cognitive science on the complex mind – brain as a device, which 
transforms input data x (produced by sight, hearing, smell and so on) onto 
motor impulses y (whereas this transformation is depending on an internal state 
s (see fig. 21, diagram A)). The brain may be considered as a huge parallel 
computer realized by a neural network, which transforms input information x 
onto output information y, where this transformation is affected by internal state 
(see fig. 21, diagram B).  This “neuroscience interpretation” of brain on a 
microscopic (neural) level does not allow a direct study of higher cognitive 
activities (solution of problems, understanding of human speech, etc.). We 
don’t say that it is fundamentally impossible, but it is very clumsy and 
complicated. For instance, a complexity of this problem is similar to a study of 
macroscopic problem “surface tension” of water by applying methods of 
quantum mechanics. Of course, in principle this way of study is possible, but it 
is very numerically as well as theoretically demanding problem. If we apply 
here a “phenomenological” approach based on macroscopic thermodynamics, 
then it is substantially simpler than a pure microscopic approach based on 
quantum mechanic. In the macroscopic approach we may formulate the 
problem of “surface tension” very quickly in terms of experimentally measured 
entities; we get a formula, which is immediately experimentally verified. There 
exists analogical situation for a study of  mind – brain relationship. Neural 
(connectionist) view is effective only for studies of elementary cognitive 
activities (e. g. initial transformation of visual information from eye retina). 
Higher cognitive activities are studied entirely by symbolic or cognitivistic 
approaches based on an idea that human brain is a computer, which activities 
are based on the following principles. These principles form a basis of the so-
called symbolic paradigm:   
   
(1) It transforms symbols by simple syntactic rules onto other 
symbols, whereas 

(2) sought are symbolic representations implemented by applying 
a language of thinking, and  

(3) mental processes are causal sequences of symbols generated 
by syntactic rules.  

An application of term „computer“ usually evokes an idea of sequential 
computer with von-Neumann architecture (e. g. personal computers are 
endowed by this architecture), where  a strict demarcation line between 
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hardware and software is possible; on the same computer may be performed 
huge number different programs – software. For these computers, a strict 
dichotomy exists between hardware and software. Unfortunately, a paradigm of 
a mind as a computer evokes for many people an idea that there is possible to 
separate brain from the mind, as two “independent” phenomena, where a brain 
plays a role of a hardware and the mind a role of software (performed on the 
hardware - brain).  

Let us turn our attention to a modern “neuroscience” approach for an 
understanding of a relationship between brain and mind [1,10], which is based 
on the connectionist conception of brain and mind. A basal model of brain 
(based on experimental neuroscience knowledge) consists in facts that it is 
formed of neurons that are mutually interconnected by directed (one way) 
synaptic connections (see fig. 21, diagram B). Thereafter we say that a 
capability of brain performing not only cognitive activities but also being a 
memory should be coded in its architecture. It means that a computational 
paradigm of human brain must be formulated in such a way that the brain is a 
parallel and distributed computer composed of a few milliards (GB) neurons, 
which are mutually interconnected by one-way connections into extremely 
complex network. A program in this parallel computer is a built-in function of 
its architecture, i. e. human brain is a single-purpose parallel computer 
represented by its neural network, which could not be reprogrammed without 
changes of its architecture. This “neuroscience” contemplations may be 
summarized in a general conclusion that the brain and mind form one integral 
unit, where the mind should be understood as a “program” performed by the 
brain. The brain and mind are nothing but two different views on the same 
object brain-mind:  

(1) If we speak about a brain, we thought its “hardware” 
structure biologically realized by neurons and their synaptic 
connections (formally represented by a neural network), and 
conversely,  

(2) If we speak about a mind, we thought its cognitive and 
other activities performed by a neural network (which 
formally represents the brain). 

We say a few remarks on relationship between a distributed representation 
(called the connectionism or subsymbolism) and a localistic representation 
(called the symbolism or between cognitivism) in theory of mind. Recently, 
there is used a compromise solution that higher level activities are considered 
on symbolic level (though there exist good connectionist models), whereas low 
level cognitive activities are considered on connectionist level. For 
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completeness, we mention that D. Gabbay has published a seminal book [xx] in 
which he and his coworkers demonstrated connectionist approaches based on 
neural networks for a study of logical reasoning. 

 A realistic interpretation of both these approaches is that they offers 
different views at the same problem. While the symbolism is appropriate for 
interpretations of higher-order cognitive activities of human brain, its 
counterpart is appropriate for low-level cognitive activities (e. g. perception). 
An alternative interpretation of this view is that symbolism could be understood 
as an approach bottom-up, which interprets higher cognitive activities by 
making use of different approaches that are known from artificial intelligence. 
We have to remember that a suggested model must have connectionistic 
plausibility; i. e. a substrate of human thinking is brain with entirely 
connectionist architecture.  On the other hand, connectionist approaches to a 
study and interpretation of cognitive activities of the human brain, are fully 
based on neural networks and represent up-bottom approach. In the course of 
application of connectionist methods there is necessary to introduce 
hypothetical blocks (modules) that perform special activities, which are closely 
related with block structure of symbolic approaches. In an ideal case, we shall 
expect that both these approaches are met at halfway denoted by dashed line in 
fig. 22. For instance, connectionist approaches offer an interpretation of 
modules used in symbolic approaches. In other words, the connectionism offers 
for symbolic approaches a "microscopic theory" for its phenomenological 
notions, which is in accordance with recent concepts of a structure and 
physiology of human brain. 
  
 
6         Discussion and final notes 
McCulloch and Pitts’s paper is very ostensibly ‘‘neural’’ in the sense that he 
used an approach for specification of neuron activities based on simple rule all-
or-none. However, McCulloch–Pitts neural networks are heavily simplified and 
idealized when compared to the then known properties of neurons and neural 
networks. The theory did not offer testable predictions or explanations for 
observable neural phenomena. It was quite removed from what 
neurophysiologists could do in their labs. This may be why neuroscientists 
largely ignored McCulloch and Pitts’s theory. For this scientific community, its 
main power is not consisting in a capability to produce verifiable hypothesis, 
but it consists in a fact that such extremely simple neural theory offers 
arguments of basal character for a discussion of “philosophical” problems about 
a brain and mind relationship. There can not be expected that a further 
“sophistication” of this theory (e. g. the rule “all-or-none” is substituted by 
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another more realistic rule or “spiking” neurons are used, etc.) will negatively 
influence general results deduced from the model.  

The 1943 paper by McCulloch and Pitts was influential in a large 
number of domains, some of them unexpected. In the realm of mathematics 
itself this paper is often given credit for founding of the important field known 
as finite state automata theory. However, its influence went even further. The 
paper was published at the height of the Second World War. At that time there 
were a number of projects in progress to build practical computing machines for 
various military purposes. The teams involved became aware of the 
McCulloch–Pitts paper very early on.  

One of those influenced was John von Neumann [xx], who is known as 
a creator of the so-called „von Neumann computer architecture“, which was 
outlined in his famous 1945 technical report. He mentioned that in existing 
digital computing devices, various mechanical or electrical devices have been 
used as elements. It is worth mentioning that the neurons are definitely 
elements in the above sense. It is easily seen that these simplified neuron 
functions can be imitated by telegraph relays or by vacuum tubes. The proposed 
similarity between the computer and the architecture of the brain was taken 
very seriously by computer scientists at the time. When early computer 
scientists referred to computers as ‘giant brains’, they were not just using a 
metaphor, but were referring to what they thought were two computing systems 
based on the same principles but using different hardware. From the early 
1940s the McCulloch–Pitts neuron was considered by many non-neuroscientists 
to be the most appropriate way to approach neural computation, largely because 
the work of McCulloch and Pitts was so well known.  

Finally, M. Minsky in the early 1970s commented [8] the paper of 
McCulloch and Pitts as follows: The McCulloch and Pitts paper is not a correct 
for many biological neuroscientists in its initial domain of application – in this 
case brain theory, since the used rule “all-or-none” is very rough and 
simplifying from the standpoint of modern neurophysiology. But it is immensely 
valuable in many other places and at many different levels, and secondly, that a 
tight coupling between brain science and computer science has existed from the 
earliest beginnings of both fields, and has enriched both.  
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