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The theory introduces two variables r and ~. The first represents 
the intensity of emotion, the second measures the intensity of activity. 
A set of integrodifferential equations is assumed to govern the varia-  
tion of r and ~ with respect to time. Since for  increasing values of r the 
conduct of the organism varies from great  impassivity through a normal 
level of feeling to extremes of a circular depression or catatonic excite- 
ment;  whereas an increase of ~ results in a transition from stupor to 
manic excitement, the solutions of the equations represent quanti tat ive 
specifications of different psychotic states. 

In the following discussion we shall develop a mathematical the- 
ory of the group of mental disorders which may be characterized in 
the following fashion: That  the characteristic course of the disease 
may be essentially described in terms of the vicissitudes of two vari- 
ables, the first representing the level of feeling, affect, or emotion in 
the organism, and the other the level of activity or conation. This 
group we consider to comprise the circular insanities, the reactive 
psychoses, and the catatonia of Kahlbaum. It  may also be supposed 
to include affective disorders superimposed upon psychoses of an- 
other type, and perhaps also, with a more specific interpretation of 
the determining variables, certain forms of neurosis; but we shall 
not consider these latter cases in detail. 

We shall denote the fundamental quantities of our theory, re- 
garded as functions of the time t ,  by the symbols ~(t)  and ~ ( t ) .  For 
increasing values of ~ (t) the conduct of the organism will vary from 
great impassivity to a normal level of feeling, then to normal strong 
emotion, and finally to the extremes of a circular depression or cata- 
torfic excitement. (We do not here take account of the quality of the 
emotion). If ~( t )  rises indefinitely, the organism will pass from the 
greatest stupor and inactivity to normal conation, and ultimately to 
manic excitement or an idiomotor seizure. We shall measure these 
var.iables from an origin placed at the resting values normal for the 
organism, so that  positive values of ~(t)  and ~( t )  correspond to 
supernormal affective and conative levels, and negative values to sub- 
normal levels. 
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Consider the change A 4 of 4 (t) during a small interval of time 
t ,  t + A t .  This quantity may be supposed to arise as the sum of 
three contributions, say AI 4 ,  A~ 4 ,  A~ 4. The first represents the 
influence of the contemporary environment at  the time in question; 
for us this can be taken only as given, and specified as an empirical 
function M(t ) .  The second, A~ 4 ,  represents the effect of the previ- 
ous experience of the organism; we may arrive at an expression for 
it in the following fashion. 

The quantity A~ 4( t )  for any subject is an average over a large 
number of terms, each of which represents the affectivity of the re- 
action he habitually makes to some particular kind of situation. Let 
us denote one of these terms by A~ 4A(t), and consider the contribu- 
tion to it of the events occun~ng during some very short interval of 
time in the past, say that  from ~1 until ~/+ d ~, where 0 -< ~/< t .  De- 
note this contribution by A~ A~ @a (t) . 

We observe first that  A~ A~ 4~(t) depends upon the degree to 
which the organism is concerned with situations of the given type at 
the time ~; times when he is little or not at  all concerned with them 
will have a negligible direct effect upon his future reactions to them, 
whereas periods of very great concern will usually have a very large 
effect. Denoting this concern by a function Q4 0l), we shall embody 
it as a factor in the expression for zl~ zl:2 4~, as is simplest to satisfy 
these conditions. Suppose then that Q (~) > 0 ,  and let the subject's 
concern at time ~7 with the given kind of situation have been attended 
with emotion, so that 4(~) is large. By the principles of learning, 
this occasion will cause recurrences of this type of matter  to be treated 
with greater emotion than otherwise, or to manifest a higher value 
of 4; and this will be the larger, as 4 (~) is greater. But if the sub- 
ject 's reactions at the time ~ have been of primarily conative type, 
with a high value for y~(V) and a correspondingly reduced emotion, 
the recurrences of the same kind of situation will also exhibit a small- 
er 4 .  This is to say, that  zl, zl~ 4A (t) increases with the value of 4 (7) 
and decreases with y,(~]), while the analogously defined A~ A~ ~a(t)  
behaves in an inverse fashion. 

We shall suppose that this relation is a simple proportionality, or 

zt~ zl~ 4a (t) = f l '  QA (~) [4(7) -- e.~ ~07)] 

A, A~ vA(t) -~fl' Qa(~) [v(~) - s2 4(~)]  (1) 

in which fl', el, and e~ are suitable constants of proportionality. 
But  the strength of any contribution to d~ 4A (t) from the past 

will in general be less in an amount dependent upon its remoteness in 
time, by ordinary forgetting; so that  we must multiply the left of 
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equation (1) by some decreasing function of the distance t - ~ into 
the past. For  this we shall select the function e-~, which seems to be 
a fair  representation of the "law of forgetting", according to Ebbing- 
haus and others; the undetermined coefficient/, here allows us to  re-  
serve to psychoanalysts and other people who do not consider tha t  an 
affecting experience ever becomes less efficient, the option of setting 
u~ - - 0 .  We shall see, however, that this assumption requires greatly 
increased strength in the homeostatic mechanism of the organism to 
avoid continuously disturbed behavior. 

The total magnitude of A~ 6 (t) will be obtained by adding to- 
gether all the quantities e-~(t-~ ) A~ A~ 6A (t) corresponding to a set of 
past intervals of time which covers (0, t) completely, and then sum' 
ming quantities of this  kind for each type of situation: Being linear 
they superpose, and if we allow the intervals into which we have di- 
vided a past to increase without limit in number, and their lengths 
to become uniformly indefinitely small, the error we have made in 
supposing that  ~ and ~p do not change in the interior of each interval 
approaches zero, and the sum will be transformed into an integral. 
We derive 

A~ r  --fl".fo' Q (,7) e-""-') [6(~) - ~ v'(~)] d~ ,  (2) 

together with a corresponding expression for A~ ~ (t) ,  where Q (t) is 
the same kind of average of the QA's that  6 (t) is of the 6A's. This 
Q (t) is in principle determinable empirically, in terms of the intui- 
tive characterization we have given it above, but not easily so in 
fact. We may approximate it in somewhat the following fashion. On 
the:average, those matters will tend to be of concern to a subject 
which excite his feelings, emotions, activity; and they will be of the 
more concern to him, the  more they do so. This consideration will 
perhaps make it plausible to put Q --  7 6 into equation (2) and its 
analogue for 9 ,  where 7 is a constant of proportionality. 

The last part  of A 6 ,  the term A~ 6( t ) ,  arises out of general 
homeostatic mechanisms of the organism. These tend to keep the val- 
ues of 6 and ~ close to the normal levels: whenever a deviation occurs 
from these levels, it brings into play restoring forces whose strength 
increases with the extent of the deviation and tends to reduce it. We 
may represent this component of A 6 and A ~ by a function f ,  so that  
A~ 6 --  - f (6 ) ,  zt~ ,/, - -  - f(v') ,  where f is properly monotone and 
never negative. If  we now pass to the limit as zl t becomes small, and 
set fl = fl', we shall obtain the equations 
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d~ 
-"~--flfo'  ~b (y) e-~"-~)[~b (~/) -- 8~ yJ(~/)] d ~ + M ( t )  -- f [ ~ ( t ) ] ,  

d v  (8) 
~---~ = p ~ '  + (,) e-~,,-,)[~o(,) - r 4 ( . ) ]  d ,  + ~r(t) - / [ ~ ( t ) ] .  

These equations form the basis of our theory, and, with the addition 
of a few subsidiary hypotheses about organic interventions, every- 
thing is to be deduced from them. In the present study me shall in 
general t reat  M and ~r, which represent the external fortunes or mis- 
fortunes of the organism, as if they consisted of a series of impulsive 
shocks between which they are relatively negfigible. The "small pains 
and troubles of daily existence," in Schopenhauer's phrase, which 
most reasonably go into this term, may be taken account of in the de- 
termination of the normal values whence we measure r and ~ .  

Our first problem is to determine the simplest form for the re- 
storing function f ( x )  which will prevent the functions ~ and ~ from 
increasing or decreasing without bound and assuming values which 
are physiologically meaningless. Considering f ( x )  to be a polynomial, 
we see that its leading term must be an odd power of x ,  in order that  
the homeostasis may work against both positively and negatively ab- 
normal values. I f  it is in addition not of the first degree, we may 
demonstrate its adequacy to limit ~ and ~ in the following way. 

Multiply the equations (3) by e .t throughout, differentiate, and 
cancel the exponential factor. We have then 

4 " = -  [ ~ + f ( r  r + f l r 1 6 2 2 4 7  
(4) 

~ " = -  [~ + f'(~)] V + f l r  fl~2 r  ~ / ( ~ ) ,  

with the initial conditions 4'(0) "- - f [ + ( 0 ) ] ,  ~'(0) - -  - / [ ~ ( 0 ) ] ,  
where we have dropped the terms in M and M,  since the variables 
cannot become infinite during the integrable impulses of which M 
and :~ consist, and at other times they obey the equations (4). Now 
time may be divided into two sorts of interval: those where l~] --> [VJ], 
and those where the reverse inequality holds. Considering intervals 
of the former type, we find, upon rearranging the first of equations 
(4), 

~ t . _ _  
~4,' - /~  8~ 4, ~, 4," ~ f(4,) 

/~ + f'(~b) /J + f'(~b) /~ + f ' ( r  
r 

- - 0 ( 1 )  -- 0 ( 4 )  - -  
t~ + f'(4,) 

(5) 
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as ~ -~ ~ through intervals of the given type, under the given assump- 
tions. Now we may distinguish these kinds of intervals of time. As 

increases through intervals of the first kind, we shall have ~" = 
O[f ' (~) ]  ; in this case, by (6) ~' is monotonically decreasing without 
bound for sufficiently large ~,  and hence will ultimately become nega- 
tive. As ~ increases through intervals of the second kind, ~" is nega- 
tive and of a greater order than f' (~):  ~" _<- - 2 f' (~), for  some 

> 0.  Since f' (~) increases without bound with its argument, in in- 
tervals of this type ~' will also ultimately decrease monotonically and 
without bound, finally becoming negative. In .intervals of the third 
kind, where ~" >= ~ f' (~), we discover the same from equation (5), 
so that we may conclude generally that  ~(t)  and ~( t )  are bounded 
for all time in intervals where [~l >= !Y']; by applying the same argu- 
ment to the second equation (4), we establish the conclusion for all 
time without restriction. This of course does not allow us to exclude 
singular.ities in the solution, but since the right of (4) obviously sat- 
isfies the Lipshitz condition, that  is no problem. 

Among the forms of f which this result leaves open to us, we 
shall select the simplest, a cubic polynomial in which for the sake of 
symmetry the square term is omitted; we put 

f ( x )  = ~ l x  + ~ x  3, ,,1, ,,3 > O. 

We now discuss the character of the history determined by the equa- 
tions 4. This may be represented by the motion of a particle in a 
plane, whose abscissa and ordinate at a time are respectively the val- 
ues of ~ and of ~ which hold at that time; the problem then becomes 
formally a dynamical system with two degrees of freedom to deter- 
mine the pa th  of such a particle. Since the coefficients of ~' and ~' in 
equations (4) are always positive, the system is dissipative; since 
it is also bounded, a well-known theorem of dynamics (Birkhoff, 1927, 
Ch. I) allows us to conclude that  it will asymptotically approach some 
stable point of equilibrium. The equilibria will be the real solution 
of the algebraic equations obtained by setting ~', ~', ~", ~" equal to 
zero in (4), which are 

~ - ~ ~1 ~ ~ = ~(~1~ + K~ 3) 

(7) 

We shall solve them under the assumption that  el - -  e~ = e: the mo- 
tion does not change its character sharply if this is not precisely true, 
as an examination of the perturbation of first order will readily con, 
vince us; and in any case we expect these parameters to be of the 
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same order of magnitude.  For  numerical  applications, a closer ap- 
proximation can always be found. 

The solutions are readily obtained, and, if  we exclude those which 
are certainly imaginary,  they  are in general five in number:  

1. A root ~1 - -  p1 - -  0, represent ing the normal  values of the vari- 
ables; 

2. A pair  of large equal roots 

p(1  - 6) 1 
r - -  + - -  [p= (1 -- ~)~ -- 4/,~ ~,, "ca] ~ , 

2 ~u ~a 2/~ Ka 
p',l = %1 ; 

3. A second such pair:  

%~-- - -  [p'(l - ~)~ - 4 W,,: ~d ~, 
2/~ "ca 2,u "ca 

p22 ~ ~ 2  ; 

4. One pair  of large roots, negatives of one another:  

%~- + -  [p'(1 + 8) ~ - 4 r ~ ~d ~, 
2/~ Ka 2,u "ca 

p ~ - -  - ~ ;  

5. A smaller pair  of such roots 
fl(1 + e) 1 

- -  - -  [ / ~ ( 1  + e )  :2 - 4/~'c~ K~] ~, 
q ~  2 ~ Ka 2 ~  ,ca 

Some or all of these roots, except of course ~1, V,, may  happen 
to be imaginary,  so tha t  they  do not in fact  represent  equilibria. This 
will be the case for  the pairs (2) and (3) i f  the radical in them is 
negative, a condition which holds i f  and only i f  

1 - - 2 ~ = < e = < l + 2 a ;  (8) 

where q ---~ ~ /K,  ~ / f l .  
The equilibria corresponding to the roots ( 4 ) a n d  (5) will exist 

under an inequality for  the radical occurring there which may  easily 
be t ransformed into 

e > 2 a - - I  
(9) 

=<- ~ + ~ V I -  3 ~ .  

For all sufficiently small a, the inequalities (8) and (9) will obvi- 
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ously leave a range for  e in which all five equilibria exist. In perhaps 
the most  common case, # and K~ will be quite small, and fl and K1, of 
the order  of unity, so that  a is close to zero, the condition (9) is sat- 
isfied by v i r ture  of the sign of e; and (8) requires only tha t  e should 
not be in t he  immediate neighborhood of unity. Still, i f  ~, ~ ,  or  K~ 
is quite large or  fi is small, both inequalities may  fail, and all equi- 
libria save the origin cease to exist;  this la t ter  is then necessari ly 
stable. An organism whose parameters  are so related cannot  possibly 
exhibit  dis turbed behavior  under  any circumstances. 

I t  is impor tant  to investigate the behavior  of the  solution in the 
neighborhood of the points of equilibrium, first, to determine their  
s tabil i ty or  instabil i ty,  and second, to th row light on the fluctuations 
of the  organism about  the normal level which are  insufficient to pass 
into permanent  disturbance.  I f  ~ - -  ~ ,  ~ ~ r~ be a point  of equilib- 
rium, and if  we set 

we shall derive expressions for  ~ and ~ of the form 

4 

7 ( t )  = ~  ~ ,  e ~,~ 
i=1 

(10) 
4 

~ ( t )  = Z  A~ e~,' 
i = ]  

where  the  ]~  are  certain l inear combinations of the  A~, these depend 
on the boundary  conditions, and, of the  system (4) fo r  this equilib- 
rium, the ~ are the roots of the character is t ic  equation which is 

1 0 - 2  0 
0 1 0 - -2  

where 

~ , =  - [ ~ +  f ' (~ l ) ]  

7 ~ = # ,  ,, - ~, f ' ( n ) ,  

provided tha t  all these roots are dist inct  and that  none of them van- 
ishes. This equation may  be wr i t ten  in the  form 
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22(2 - ~) (2 - ~) - 2 [ r ~ ( , ~  - ~i) + r~(2 - , ~ 2 ) ]  

+ 71 72 + fi2 ~ ~2 (~ -- 2 ~ vl) - - 0 .  
( l i )  

Since I,,11 - -  t~21 for  all the points of equilibrium, we have al ---- a2 ---- a ,  
and equation (11) is easily soluble, with roots 

Et 
2- - - - - - - � 89  - + 2 V ( ~ , l + 7 2 ) ~ - - 4 Z ]  ~, (12) 

2 

in which Z - -  71 7~ + f12 e ~1 (~2 - 2 e ul) and each of the four  2~ is ob- 
tained by a different  choice for  the two doubtful signs in expression 
(12). Now for  the equilibria we are considering to be of stable type, 
in the  sense tha t  no sufficiently small deviation f rom tha t  point will 
generate  forces which tend to augment  it, the condition is t ha t  none 
of the 2~, or their  real parts,  i f  some of them be complex, shall ex- 
ceed zero. This will be the case here i f  and only i f  

a--- - -  [~ + f ' (~)]  < 0 ,  

which is always true, 

71 § 712 ---- 3 fl ~i -- 2/~ ~i -- 6/~ K3 ~21 < fie ~2, (13) 

and 

)C'-- (3 ~ K8 ~'21 § ~e~'2 -~ /UK1 - -  2 fi, 'l) (3 tt K3 ~,22 
(14) 

+ ~ ~i - /~  ~)  +/~2 ~ ~i (~2 - 2 ~i e) > 0. 

For the equilibrium at the origin, these reduce to 

- 2 / ~ i  < 0,  /~ K21 > 0, 

so that the origin is always a stable point, as we should expect. For 
the other equilibria, the conditions become extremely cumbersome 
when handled directly; we shall therefore approximate them in the 
following manner. The quantity a ~ --/~ ~i KJ/~ 2 may in general be ex- 
pected to be quite small in comparison with unity; we may therefore 
expand in the expressions for the points of equilibrium in powers of 
a 2, substitute in (13) and (14), and terminate the expansion at the 
first term that gives a determinate form to the conditions. We dis- 
cover that for the points ~:i, ~v21 and 631, ~v~:1 we may neglect a~ itself, 
whereas for the smaller equilibria at 62~, V2~ and 6~2, ~ it is neces- 
sary to take account of terms in ~2; and for one initial value, namely 

= �89 we must proceed to terms in a~. The results are as follows: 
the condition (13) is satisfied 
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1) By ~ 1 ,  ~ unless 3 /5  _-< e < 1; 

2) By ~s~2, ~ unless 3 < e <= 2 + 1/10; 
3) By ~3~, y~31 Jf v -> 0 ,  i.e., always; 
4) By ~ ,  ~3~ if  ~ -> 0 .  

147 
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The inequality (14) is fulfilled 

1) By~21 ,~21un le s s1<e=<  1; 
2) By ~2~., ~= if e < �89 

3) B y 6 3 ~ , ~ l i f e - 0 ;  
4) B y 6 ~ , ~ u n l e s s ~ / 7 - - 2 <  e <  1. 

We may obtain a general insight into the qualitative character of 
the motion determined by our equations from the first figure. The de- 
generate algebraic curve consisting of a parabola A together w, ith the 
axis of ~, divides the plane into the regions for which 6" is positive and 
those for which it is negative, while the closed curve B together with 
the cubic parabola separate the regions of positive from those of nega- 
ative ~". Clearly, the intersections of these curves will constitute the 
points of equilibrium. In each of these regions, we now have arrows, 
whose slope is the value of ~"/6", which represent roughly the direc- 
tion of motion of a particle placed there with no kinetic energy. The 
presence of kinetic energy and the dissipative forces will modify these 
considerations somewhat, and the initial conditions in (4) will super- 
pose upon these forces an initial velocity with components - f ( 6 ) ,  
- f  (~) toward the origin. 

The difference in character between the stable and the unstable 
equilibria becomes very clear in the diagram. As remarked above, 
these are no periodic orbits in the large, and unless continually dis- 
turbed, the particle will ultimately settle toward one of the equilibria. 

This work was aided in part  by a grant  from the Dr. Wallace C. 
and Clara A. Abbott Memorial Fund of the Un.iversity of Chicago. 
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