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The development of a general theory of neuron-networks is here ex- 
tended to cases of non-steady state activity. Conditions for stability and 
neutrality of an equilibrium point are set up, and the possible functions 
representing the variation of excitation over time are enumerated. The 
inverse network problem is considered--which is, given a preassigned 
pattern of activity over ~time, to construct when possible a neuron-net- 
work having this pattern. Finally, a canonical form for neuron net- 
works is derived, in the sense of a network of a certain special topo- 
logical structure which is equivalent in activity characteristics to any 
given network. 

In essaying a t r e a t m en t  of the  dynamical  case, we shall find i t  
coactive to take into account the finitude of conduction time. We may  
charac ter ize  each fiber of ~ by a total conduction time 0, defined as 
the sum of its p roper  conduction t ime and the average  synapt ic  delay 
at  the  prevening  synapse;  i t  is clear t ha t  wi thout  loss of  general i ty  
these quanti t ies  may  be supposed equal. F o r  a t  least one cannot  redar-  
gue tha t  the i r  rat ios  are  ra t iona l ;  and this being the case, they  have, 
when expressed in te rms of  the  smallest  0, a least  common denomina- 
to r  v .  Replace, then,  every  fiber of total  conduction t ime 0 by  a chain 
of vO fictitious fibers and synapses, each of which has a total  conduc- 
t ion t ime 1/v and suitable thresholds,  etc., so as to be otherwise  the 
same as the replaced fiber. I f  this has been done, we shall measure  
t ime in units  of 1/v in length, so tha t  all total  conduction t imes be- 
come unity.  

A f t e r  these prepara t ions  we may wr i te  a set of equations for  the 
y~ consimilar  to the set (2) .  The principal difference will be this:  tha t  
if  we view the quanti t ies  y~ as funct ions  of time, the excitat ion re- 
ceived by a given synapse s~ f rom a chain ck in complete act iv i ty  will 
no longer be de termined by the contemporary value of the excitat ion 
at  the af ferent  end of the chain, but  r a t h e r  by its value the re  fo r  a 
t ime-point  precedent  by an amount  equal to the total  conduction t ime 
of the chain. In our  units  this la t te r  is ~ .  We may therefore ,  wr i te  
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(1) 
+ As[As(1 -- as) + Ys(1 -- fls)] / I 

I f  we use Boole's operator  E ,  defined by E l ( x )  = f ( x  + 1) and 
having the obvious proper ty  E m f ( x )  z f ( x  + m ) ,  and change the 
origin for t .by set t ing t : t' + e ,  where e is the largest  of t he  m ,  we 
may  wri te  this in the form 

E ~ Yi : ai + ~ ~s~I/~s + ~ Vs~ As as fls Eps Y~ 
i / k 

(2) 
+ As[As(1 -- as) + Ys(1 --/is)]} , 

wherein we have set ps = e -  vs and  dropped the prime on t .  
I f  we define the mat r ix  

H (E)  ~-- ] ]Z ~s, ~s~ As as fls Et>, I I, 
J 

this becomes 

[E ~ I -  H ( E ) ]  y - - R ,  (3) 

where R is defined as before. I t  will be noted tha t  when we give to E 
the value unity,  the mat r ix  H ( E )  reduces to M: this is consonant 
with the definition of the steady state as a condition where there is no 
change with time, which is to say, 

y~ (t -4- 1) - -  Ey~ (t)  : y~ (~) - -  1 y~ ( t ) .  

I f  the mat r ix  E ~ I - H be regarded as a polynomial mat r ix  in the 
indeterminates  E ,  a~, fl~, we may, by the use of Smiths '  process, find 
unimodular  matrices P and Q such tha t  

P [ E  ~ I - H ]  Q - - T ,  

say, is a diagonal mat r ix  whose non-vanishing elements are the im 
var ian t  factors of E ~ I - H ;  let us denote these factors by 

T i l E ,  a ,  fl] , 

where i varies f rom uni ty  to the rank  of E ~ I - H and T~ divides T~+I, 
a s  is well-known. I f  we make the substi tutions 

z ~ - - Q - l y , S - - - p R ,  

equation (3) may  be wr i t ten  

T z - - S ,  (4) 
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which, in  scalar  form, is 

T~ [ E ,  a ,  fl] z~ - -  S~ [i - -  1 , . . . ,  P ]  . (5) 

The system (5) is a set of independent  differerice equations in 
the  z, whose coefficients are constants or  multiline~r' in the multi- 
pliers. Fo r  any region Fp ,  these quanti t ies will have determinate  val- 
ues, ~pl, ~p~, a n d  the equations (5) may  consequentIy, be solved by 
the s tandard methods,  the solution holding throughout :Pp .  It  may  be  
obtained explicitly as follows. 

We first derive the solution of the corresponding homogeneous 
equation, found upon replacing the r ight-hand side of  equation (5) 
by zero. I f  we equate the function T, [ E ,  a ,  fl] to be  zero and  solve 
for  E as a numerical  magnitude,  we shall obtain a sys tem of roots, 
~ 1 , 2 ~ ,  . . . ,  ~,~, respectively of multiplicity y l ,  ~ ,  . . . ,  ~, ,  say. Then 
the solution in question is given by 

z~ - -  F~ a~s~ t ~ ~"~j, (6) 

and the quanti t ies a~j~ are  ei ther constants or, more  generally, arbi- 
t r a ry  periodic functions of period unity. 

To derive a par t icular  solution for  equation (5) we must  distin- 
guish t w o  cases. In the first, none of the roots 2~ is unity:  we find 
easily by subst i tut ion that  in this case a constant  :value:for z~ satis- 
fies equation (5) ; this constant  value is S d T [ 1  ; a ,  fl]. I n  the con t ra ry  
case there  is somewhat  grea te r  difficulty. I f  uni ty  be a root  of 
T~ [ E ,  a ,  fi], of multiplicity r~, say, we may ' t hen  put  

T~ [ E ,  a ,  fl] z~-- ( E -  1) ~, k~ (E)z~ = A ~' ~g(E)z~ = S~,  (7) 

where  A is the difference-operator;  if  we make  the subst i tut ion 

Vi ~ Al r~ Z,~, 

this becomes 
~ ( E )  v~ = S ,  , (8) 

in which subst i tut ion of a constant  value for  v~ i s  permissible, and, 
as before, yields v, : S j k ~ ( 1 )  as a par t icular  so lu t ion .  To find z~, 
we now have the equation 

A', z~ - -  S~/kv (1) , 

which can be solved immediately as 

S~ P ( t  + 1) 
z~--  ~ ( 1 )  F ( t  + 1 -- r~) F(r~  +1)"  (9) 
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This may  be added to the  solution of the homogeneous equation to 
yield the general solution of  equation (5) ,  which is accordingly 

Si / ' ( t  + 1)  8 7 , - ,  

k~(1) F ( t  + 1 -- r~ )F( r~  + 1) s:~ 

The parameters  a~s~ a re  to be determined f rom the par t icular  circum- 
stances a t tending the ent ry  of the ne twork  ~( into the region in ques- 
tion. 

I t  will be instruct ive to compare the asymptot ic  behavior  of the 
solution (6) with the results of the purely stat ic  analysis  made above. 
We note first in this connection that  the presence of  uni ty  as a simple 
or  multiple roo t  of some T~ is equivalent to the vanishing of the de- 
t e rminant  II - M I :this follows at  once f rom the fac t  tha t  E ~ I - H ( E )  

becomes I - M when we set  E - -  1 ,  tha t  T~ [1 ,  a ,  fl] a re  consequently 
the  invar iant  factors  of I - M ,  and tha t  the  number  of vanishing in- 
va r i an t  factors  of a mat r ix  is equal to its nullity, which by hypothesis  
is at  least  uni ty  in the present  case. Considering first the case where  
i I  - MI ~= 0 ,  we see that  equation (10) assumes  the fo rm 

iSti s '17 j-1 
+ ~ ~ a~s~ t ~ 2tis. (11) 

The 2~s, none being unity, may  be divided here into three  groups.  
Firs t ,  there are those which exceed uni ty in absolute value: these con- 
s t i tu te  say the set  01 .  Second, those such that  I2~s] < 1 ; these may  be 
collected into 03 .  Finally, those which are - 1 :  these comprise 03 .  
Now if  01 and 08 are  both null, the t rans ient  term on the lef t  of equa- 
t ion (11) tends to zero with t independently of the initial values, so 
tha t  the set  of y~ correlated to 

z~---- S ~ / T ~ [ 1 ,  ~,  ~] , 

i f  still within the  region Fp in question, are the asymptot ic  values ap- 
proached by the ne twork  wha tever  its initial circumstances. We may 
there fore  call this equilibrium point a sDable one. I f  this set of values 
is not  within the region--which means tha t  the mult ipl ier-distr ibution 
corresponding to it does not sa t i s fy  the  inequalities (8 ) - - the  ne twork  
will a lways leave Fp ,  however  it enters. Now, if  03 is null, but  01 is 
not, then in general the expression on the r ight  of equation (11) will 
diverge to infinity with increasing t ,  ei ther steadily or in the form of 
explosive oscillations, depending upon the sign and magni tude rela- 
tions of the members  of 01 .  In a certain par t icular  case, however,  
namely when ~( en te r s / ' p  in such a way  that  all the coefficients of the 
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terms in the ~ j  e 01 are  zero, the system will converge, as before,  to 
S~/T~ [ E ,  a ,  fl] , if  this lie within the region. This equilibrium point 
is highly special, since any infinitesimal divergence f rom the proper  
initial conditions will lead to a non-zero coefficient of some term in a 
2~j e O1 and consequent explosion. We therefore  te rm this equil ibrium 
point an unstable one. We remark  that  the static analysis does not  
distinguish these essentially different types of equilibria. 

An especially interest ing case is that  in which ei ther  0'1 is null 
or all the  coefficients of terms in each ~ j  e O1 vanish, so that  we do not  
have explosion, bu t  03 is non-null, so tha t  some 2~j - -  - 1 .  I f  certain 
of these are multiple roots, and we find accordingly terms of the  fo rm 
a~j,, t~(--1) ~ , which diverge to infinity wi th  t ,  we shall also suppose 
the coefficients of these zero, so that  the z~ al l  remain  finite. In this  
case we shall have asymptot ical ly an expression for  each z~ of the  
form 

z~-~Si/T~[E, a,fl] + B ( - 1 )  t, 

so tha t  there are  s tanding oscillations of constant  ampli tude in the  
s teady state, whose ampli tude is determined by the initial conditions. 
This will be a stable or  an unstable equilibrium accordingly as we have 
had to assume zero values for  the coefficients of  par t icular  te rms in 
equation (11) to avoid explosion or not. 

We may now re turn  briefly to the case where  lI - M I ~ 0 ,  so 
tha t  uni ty  is a root  of some of the T~. Here  we may  dist inguish two 
contingencies: first, where  the S~ corresponding to every such T~ van- 
ishes, and second, where  this is not the case. The second case, as may  
easily be verified, is equivalent to the inconsistency of the equations 
(4) as discussed in the static analysis:  here  we shall have ~he par-  

t icular solution (9) for  the z~; and (11) wi th  this addend always di- 
verges to infinity, so tha t  no equil ibrium point of any sor t  can exist  ,in 
Fp--which accords with our previous conclusions. In the  first of these 
cases, however,  there is no par t icular  solution to be added, and the 
appropr ia te  discussion is exactly analogous to tha t  fo r  the case of 
~ j  ~ - 1 ;  if  all coefficients of  divergent  terms be made zero, we shall 
obtain, asymptotically,  z~ - -  BI~ + B~ ( - 1 )  t, where  BI~ and B:~ depend 
on the initial conditions, except tha t  B2~ ~ 0 if  O3 is null. We shall 
thus  have, generally, oscillations of constant  ampli tude about  a base- 
line determined by  the initial conditions, which, in the case B~ - -  0 ,  
leads to an a rb i t r a ry  pa ramete r  in the expression f o r  possible equi- 
l ibrium points y in Fp ; and since the number  of T~ with the root  uni ty  
is equal to the nullity q of I - M ,  we find tha t  there  is a q-dimensional 
locus of such points in Fp ,  in consonance with the  results  of the s tat ic  
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considerations. Which of  these equilibria is in fact  a t ta ined is, of  
course, to be determined f rom the manner  of ent ry  of 2~ i n t o / ' p .  

Let  us define a network-function (an N-funct ion)  in the follow- 
ing way:  

(1) .  ~ (pj xS)a ~ is an N,  function, for  any functions Pi of perL 
i=0 

od uni ty  which do not  vanish identically, and any constant  a r 1 .  
(2) .  Any  l inear combination of functions of  the  fo rm (1) is an 

N-funct ion ; 

F ( x  + 1) 
( 3 ) ,  N(w)  + qfx i + K  j~ F ( x  + l - r )  F ( r  +:1) is an N-func~ 

tion where:N(x)  has  the form (1) or (2) ,  K i s a  constant,  the qs are 
unipeviodic funct ions which do not vanish identically, and r is zero or 
a posit ive integer. 

N-funct ions of  the f o r m  (1) and (2) will be said to be of zero- 
order; those of the form (3) to  be of  order r .  Moreover,  we shall 
consider any two N-funct ions  to be  equivalent if  one arises out  of the  
other  by  subst i tu t ing any functions of period uni ty which do not van- 
ish identically for  the  pj and qs �9 The excitat ion in 2~ within a given 
region Fp a s ~  function of time, as  given by equation (11),  is an N- 
function and in normal form:  we shall call i t  or  any equivalent  net- 
work  function the characteristic function o f / ' p .  Evidently,  any char- 
acter is t ic  function o f  Fp will serve equally well to specify the  excita- 
t ion-funct ion of g( in Pp .  

Given these definitions, we are  now in a position to s ta te  and 
prove a theorem which complements the foregoing results by a part ial  
solution of the inverse problem, which is, to determine conditions un- 
der  which a given set  of  excitation functions can be realized by  a suit- 
able finite nerve-fiber network.  We shall have, in fact,  the 
THEOREM. 

Let  a given P-space be p~rtitioned into regions by planes perpen- 
dicular to the axes in any desired way, and let a set of P functions be 
specified for  each region, one for each coordinate axis: then, that 
there may exist a finite network ~ , wi th  some pattern of applied ex- 
ternal stimulation, ,and having some set of P third-order synapses, 
such that the course of excitation at each such synapse when the sys- 
tem is in any of the regions Fp is given by the function specified far 
the corresponding coordinate axis in Fp , it is sufficient that the fol- 
lowing conditions be fulfilled: 

(A) .  Each of the specified excitation-functions must  be an N- 
function~ 
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(B.). The given partitioning of P-space will define :a set of mul- 
tipliers analogous to those we have used above, though not 
necessarily univocally ; and throughout every given region 
I~p these multipliers will have a single value-distribution 
np~, np~. Moreover, for  every such distribution ups, up2 
such that no pair aj , flj are simultaneously zero, there is a 
corresponding region Fp. Then the condition is that, for 
Some admissible set of multipliers, every region Fp whose 
specified exvit~tion functions are not all constant must 
have at least one pair of multipliers a~ , fl~ simultwneously 
unity. 

In part icular ,  given these conditions, it is possible to find a set  of 
independent  ne tworks  each of which consists of n simple circuits wi th  
one common synapse (we shall t e rm these ne tworks ,  which contain 
jus t  one th i rd-order  synapse rosettes), such tha t  g( arises by run-  
ning chains from the centers  of the roset tes  to various designated 
points outside: bu t  none back, so that  the  s ta te  of the  whole ne twork  
is determined by  the states of the separate  roset tes  independently. We 
shall call ne tworks  of this kind canonical networks.  

In the proof, it will evidently be enough to construct  a separa te  
such $~ for  each dimension of P-space separately,  since the g( of  the 
theorem is then the aggregate  o f  these separate  sub-networks.  

Now to every ne twork  funct ion 

~'~ " b F ( x  + 1) N~ (x) ~ ]E P~j x ~ a ~  + ~ p~ x ~ + 
j~l ~-~ ~o F ( x  + 1 - r) I ' ( r  + 1) 

in normal  form we may correlate a set  of polynomials in E 

~ n ( E )  -~  E n ( E  - a ~ O ~ , ( E  - a ~ ) , , . . .  ( E  - a ~ ) ~ , ,  

which differ among themselves only in a zero root  of vary ing  multi- 
plicity n .  Let  a suitable such polynomial be chosen, and denote the 
coefficient of E ~ in i t  by 0 ~ ( N 0 ,  where  n is the  multiplicity of i ts  
zero root. 

Consider now a given region F~, to which our hypothesis  assigns 
a non-constant  network-funct ion N~, and let it have a set of charac- 
terist ic multipliers of which one pair,  say a j ,  flj, corresponding to the 
limits Aj, u are both unity.  Now construct  a roset te  ~ in the  follow- 
ing manner :  if  ~gd(E) be of the n-th degree in E ,  ~ is to have 
n - s circuits, C~, C~-~ , -.. , C~, having respectively n ,  n - 1 ,  .-. , s 
fibers apiece. All the circuits are to have the ,same limits, namely A~ 
and Y~-- this can evidenEy be secured in every chain of sufficient 
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length, and here t h e y  are all longer than  an a rb i t r a ry  s--and the cir- 
cuit  Cp is to have an act ivi ty parameter  Ap - -  0%-~(Ns). We shall sup- 
pose t ha t  B~ ~--- a~ + ~ / ~ j ,  as being the external st imulation at  the cen- 

i 
ter  of ~ ;  but a~ and the /~ j  may be otherwise arbi t rary .  

Now consider the course of act ivi ty in ~(. By the appropriate  
case of equation (2) above, we find for  this the equation 

[ ~" OPs(N~)EP ] y~--  ~ (E)ys = B~ (12) 

where ys is the excitation at  the center of q~. As before, we find the 
solution of this to be 

v la~j r 
l~Sjk*t, r 

+ B~ ( / ~ g  jE: I  r ( x + i - - r )  r ( r + l ) '  

which becomes N~ (t) when we set 

B ~ , - - b / [ ~ ( E ) / ( E  -- 1) ~] ~:~. 

We shall suppose tha t  rosettes "/(~ have been constructed in this man- 
ner  for  every region r s  with a pair  as --- fls - -  1 .  

Suppose now tha t  n ~ ,  n~ is the multiplier-distr ibution for  Fs ,  
and consider the function 

- -  - -  - -  / /  as/~.  (14) ~s H (1 a~) (1 flj) ~,j~.,, 

Evidently,  for  the  set of values for  the multipliers ~ ,  ~ ,  ~s is unity,  
while for  any  other  such distribution, it  vanishes. ~s may be wr i t ten  
out as a polynomial: 

q~s --~ ~ Wi,.~ ail ar ...aim fl~l t3~ "'" ilk,,, (15) 
i,k 

in which every Wr = -+ 1.  

The reader  will easily see tha t  if  any two chains c~,, cq have limits 
Av, Yv; Aq,  Yq, respectively, and corresponding multipliers %,  fly and 
aq, ,6q, the result  of put t ing  them in series has the multipliers a~ aq 
and flv flq. It  follows tha t  taking each te rm on the left of equation 
(12), say W~ a~,~ a~ . . . a ~  fl~ fl~ ... f l~ ,  we may  construct  a chain 
c~ whose lower mult ipl ier  is a~l a~ .-. a~,~ fl~ --- fl~, ; and we shall as- 
s ign to it  the act ivi ty parameter  A~ --- W ~ ,  and a ~h~ = 0 .  

Now, taking the center of some one "/~ of the constructed ro- 
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settes, say a synapse s~, and an a rb i t ra ry  external synapse sk, con- 
nect a chain c~k of this kind f rom s~ to s~ for  each te rm on the r igh t  of 
equation (15). By the definition of ~ ,  the excitation at  s~ will then 
be the same as at  s~ when the multipliers have the distr ibution nl~, 
n~;  otherwise it will vanish. Now, if  we connect every rosette ~ 
to s~ in this manner,  then whenever  we are in some region F~ with  a 
multiplier-distr ibution n~1, n~.~, we shall have y~ - -  N~( t ) ,  which is 
the N-function required in the hypothesis. If, however, we have yk 
constant  in F~, we can have simply a single synapse s , ,  with a suit- 
able external stimulation, connected to sk in the same manner,  instead 
of a roset te;  and this will give the proper results a t  s , .  Since we can 
make a construction of the above type for  every dimension of P-space, 
the theorem follows. In particular,  it will be noted tha t  by this meth- 
od we may  distr ibute equilibria of various types among the regions 
subject only to the conditions of the theorem. The necessity of the 
condition (A) of the theorem will be found evident. 

We may  conclude by not ing an immediate 

COROLLARY 

Given any finite network $~ , it  is possible to find a set of inde- 
pendent ~~ such that the excitation function of ~ for every re- 
gion is a linea,r combination of those of the rosettes--i.e., we can re- 
duce any network  to a canonical network having the same excitation 
function. 

In an intended sequel we shall consider the extension of results 
of the above type to networks governed by the two-factor  excitation 
theories, instead of the present simplified l inear model. We shall there 
develop the subject pr imari ly  f rom the s tandpoint  of the inverse net- 
work problem, since it seems probable tha t  it  is here t ha t  the most 
f ru i t fu l  and practically useful results are likely to be obtained. 

In conclusion I wish to express my appreciation to Dr. A. S. 
Householder for  his perspicacious counsel and criticisms. 
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