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The development of a general theory of neuron-networks is here ex-
tended to cases of non-steady state activity. Conditions for stability and
neutrality of an equilibrium point are set up, and the possible functions
representing the variation of excitation over time are enumerated. The
inverse network problem is considered—which is, given a preassigned
pattern of activity over time, to construct when possible a neuron-net-
work having this pattern. Finally, a canonical form for neuron net-
works is derived, in the sense of a network of a certain special topo-
logical structure which is equivalent in activity characteristics to any
given network.

In essaying a treatment of the dynamical case, we shall find it
coactive to take into account the finitude of conduction time. We may
characterize each fiber of N by a total conduction time 6, defined as
the sum of its proper conduction time and the average synaptic delay
at the prevening synapse; it is clear that without loss of generality
these quantities may be supposed equal. For at least one cannot redar-
gue that their ratios are rational; and this being the case, they have,
when expressed in terms of the smallest 9, a least common denomina-
tor v. Replace, then, every fiber of total conduction time 6 by a chain
of vd fictitious fibers and synapses, each of which has a total conduc-
tion time 1/v and suitable thresholds, etc., so as to be otherwise the
same as the replaced fiber. If this has been done, we shall measure
time in units of 1/v in length, so that all total conduction times be-
come unity.

After these preparations we may write a set of equations for the
¥, consimilar to the set (2). The principal difference will be this: that
if we view the quantities y; as functions of time, the excitation re-
ceived by a given synapse s; from a chain ¢, in complete activity will
no longer be determined by the contemporary value of the excitation
at the afferent end of the chain, but rather by its value there for a
time-point precedent by an amount equal to the total conduction time
of the chain. In our unifs this latter is »; . We may therefore, write
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24 NEURON NETWORKS: THE DYNAMIC PROBLEM

Yi = o +2¢ii{ﬂi + 2y o BiA; i (t — »;)
(1)
+A;[A(1—0) +Y,;(1— ﬂi)]} .

If we use Boole’s operator E , defined by Ef () = f(x + 1) and
having the obvious property E"f(x) = f(x + m), and change the
origin for t by setting t = ¢’ 4 ¢, where & is the largest of the »;, we
may write this in the form

Eeyi=oi +3 ¢ji{ i+ S Ajo; B By
i k

: (2)
+ 451 (1= a) + 7,1 - 8]}
wherein we have set p; = ¢ — »; and dropped the prime on ¢ .
If we define the matrix
H(E) = ||2 ¢5i pix Aj a; B; EP1||,
3
this becomes
[Ec]1—H(E)]y=R, (3)

where R is defined as before. It will be noted that when we give to
the value unity, the matrix H(E) reduces to M: this is consonant
with the definition of the steady state as a condition where there is no
change with time, which is to say,

Yi(t +1) =Ey; (1) =y: (1) =19 ().

If the matrix E¢ I — H be regarded as a polynomial matrix in the
indeterminates E , o; , §; , we may, by the use of Smiths’ process, find
unimodular matrices P and @ such that

P[EcI—-H]Q=T,

say, is a diagonal matrix whose non-vanishing elements are the in-
variant factors of E¢ I — H; let us denote these factors by

Ti[E,(’-,ﬂ] ’

where ¢ varies from unity to the rank of E¢ I — H and T; divides Ti.1,
as is well-known. If we make the substitutions

z2=Q'y,S=PR,
equation (3) may be written
Tz=S8S, (4)
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which, in scalar form, is
Ti[E,a,f]2:=S; [i=1,...,P]. (5)

The system (5) is a set of independent differerice equations in
the z; whose coefficients are constants or multilinear in the multi-
pliers. For any region I', , these quantities will have determinate val-
ues, 7y, , 7p2 , and the equations (5) may consequently be solved by
the standard methods, the solution holding throughout' I, . It may be
obtained explicitly as follows.

We first derive the solution of the corresponding homogeneous
equation, found upon replacing the right-hand side of equation (5)
by zero. If we equate the function T:[E, a, 8] to be zero and solve
for E as a numerical magnitude, we shall obtain a system of roots,
Aity Aig 5 *o, Ais , Yespectively of multiplicity %, , 5., -+-,.%s , S2y. Then
the solution in question is given by

=3 %i @ign 2755, (6)
j=1 k=0
and the quantities @, are either constants or, more generally, arbi-
trary periodic functions of period unity.

To derive a particular solution for equation (5) we must distin-
guish two cases. In the first, none of the roots 1;; is unity: we find
easily by substitution that in this case a constant value for z; satis-
fies equation (5) ; this constant value is S;/T[1; a, §]. In the contrary
case there is somewhat greater difficulty. If unity be a root of
T.[E, a, 8], of multiplicity r; , say, we may then put

T:[E,0,8lzi=(E—1)"P(E)zi =4 P (E)2:i= Si, (7)
where A4 is the difference-operator; if we make the substitution

V= A Zi,
this becomes
Y(E) vi=2_8i, (8)

in which substitution of a constant value for v; is permissible, and,
as before, yields v; = S;/¥ (1) as a particular solution. . To find z;,
we now have the equation

Anz;=8;/¥Y (1),
which can be solved immediately as

S r'¢+1)
TYwQ)rE+1—r) L(r+1)°

(9)
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This may be added to the solution of the homogeneous equation to
yield the general solution of equation (5), which is accordingly

S; I'(t +1) S Mea

:T(l) r¢+1—r)r(r,+1) +7§1 Eﬂ,“imt"ltﬁ. (10)

2

The parameters a;;; are to be determined from the particular circum-
stances attending the entry of the network &\ into the region in ques-
tion.

It will be instructive to compare the asymptotic behavior of the
solution (6) with the results of the purely static analysis made above.
We note first in this connection that the presence of unity as a simple
or multiple root of some T'; is equivalent to the vanishing of the de-
terminant [I — M|:this follows at once from the fact that E¢I — H (E)
becomes I — M when we set E =1, that T;[1, o, §] are consequently
the invariant factors of I — M, and that the number of vanishing in-
variant factors of a matrix is equal to its nullity, which by hypothesis
is at least unity in the present case. Considering first the case where
I — M| # 0, we see that equation (10) assumes the form

S,‘ 8 7j-1
— . L
Till, a, f] +]§1 ’g‘a“kt Alij. (11)

Zi
The 1;;, none being unity, may be divided here into three groups.
First, there are those which exceed unity in absolute value: these con-
stitute say the set ©, . Second, those such that |4;;| < 1; these may be
collected into ©,. Finally, those which are —1: these comprise 6;.
Now if 0, and ©; are both null, the transient term on the left of equa-
tion (11) tends to zero with ¢ independently of the initial values, so
that the set of y; correlated to

Z,:S@/T;[l,a,ﬁ] ’

if still within the region I', in question, are the asymptotic values ap-
proached by the network whatever its initial circumstances. We may
therefore call this equilibrium point a stable one. If this set of values
is not within the region—which means that the multiplier-distribution
corresponding to it does not satisfy the inequalities (8)—the network
will always leave I', , however it enters. Now, if 0, is null, but 6, is
not, then in general the expression on the right of equation (11) will
diverge to infinity with increasing ¢, either steadily or in the form of
explosive oscillations, depending upon the sign and magnitude rela-
tions of the members of ®,. In a certain particular case, however,
namely when &N enters I'p in such a way that all the coefficients of the



WALTER PITTS 27

terms in the i;; ¢ ©, are zero, the system will converge, as before, to
Si/Ti[E, a, f], if this lie within the region. This equilibrium point
is highly special, since any infinitesimal divergence from the proper
initial conditions will lead to a non-zero coefficient of some term in a
4ij € ©; and consequent explosion. We therefore term this equilibrium
point an unstable one. We remark that the static analysis does not
distinguish these essentially different types of equilibria.

An especially interesting case is that in which either 0, is null
or all the coefficients of terms in each i;; ¢ ®, vanish, so that we do not
have explosion, but @; is non-null, so that some 1;; = —1. If certain
of these are multiple roots, and we find accordingly terms of the form
@i B¥(—1) ¢, which diverge to infinity with ¢, we shall also suppose
the coefficients of these zero, so that the z; all remain finite. In this
case we shall have asymptotically an expression for each 2; of the
form

2:=8:/T:[E ,a, 8] + B(-1)?,

80 that there are standing oscillations of constant amplitude in the
steady state, whose amplitude is determined by the initial conditions.
This will be a stable or an unstable equilibrium accordingly as we have
had to assume zero values for the coefficients of particular terms in
equation (11) to avoid explosion or not.

We may now return briefly to the case where | — M| = 0, so
that unity is a root of some of the T;. Here we may distinguish two
contingencies: first, where the S; corresponding to every such T; van-
ishes, and second, where this is not the case. The second case, as may
easily be verified, is equivalent to the inconsistency of the equations
(4) as discussed in the static analysis: here we shall have the par-
ticular solution (9) for the z;; and (11) with this addend always di-
verges to infinity, so that no equilibrium point of any sort can exist in
I'c—which accords with our previous conclusions. In the first of these
cases, however, there is no particular solution to be added, and the
appropriate discussion is exactly analogous to that for the case of
Ai; = —1; if all coefficients of divergent terms be made zero, we shall
obtain, asymptotically, z; = B,; + B,;(—1)?, where B,; and B.; depend
on the initial conditions, except that B,; = 0 if ©; is null. We shall
thus have, generally, oscillations of constant amplitude about a base-
line determined by the initial conditions, which, in the case B,; =0,
leads to an arbitrary parameter in the expression for possible equi-
librium points y in I', ; and since the number of T'; with the root unity
is equal to the nullity ¢ of I — M , we find that there is a g-dimensional
locus of such points in I', , in consonance with the results of the static
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considerations. Which of these equilibria is in fact attained is, of
course, to be determined from the manner of entry of 9\ into I, .

Let us define a network-function (an N-function) in the follow-
ing way:

(1). X (p; 27)a* is an N-function, for any functions p; of peri-

§=0

od unity which do not vanish identically, and any constant @ # 1.

(2). Any lihear combination of functions of the form (1) is an
N-function;

'z+1)

I[(z+1—7r)I'(r+1)

tion where-N(z) has the form (1) or (2), K is a constant, the ¢; are
uniperiodic functions which do not vanish identically, and # is zero or
a positive integer.

N-functions of the form (1) and (2) will be said to be of zero-
order; those of the form (3) to be of order r. Moreover, we shall
consider any tweo N-functions to be equivalent if one arises out of the
other by substituting any functions of period unity which do not van-
ish identically for the p; and q;. The excitation in &\ within a given
region I'p as a function of time, as given by equation (11), is an N-
function and in normal form: we shall call it or any equivalent net-
work function the characteristic function of I', . Evidently, any char-
acteristic function of I', will serve equally well to specify the excita~
tion-function of N in I'p .

Given these definitions, we are now in a position to state and
prove a theorem which complements the foregoing results by a partial
solution of the inverse problem, which is, to determine conditions un-
der which a given set of excitation functions can be realized by a suit-
able finite nerve-fiber network. We shall have, in fact, the
THEOREM.

Let a given P-space be partitioned into regions by planes perpen-
dicular to the axes in any desired way, and let a set of P functions be
specified for. each region, one for each coordinate axis: then, that
there may exist a finite network N , with some pattern of applied ex-
ternal stimulation, and having some set of P third-order synapses,
such that the course of excitation at each such synapse when the sys-
tem is in ony of the regions I, is given by the function specified for
the corresponding coordinate axis in I'y , it is sufficient that the fol-
lowing conditions be fulfilled:

is an N-func-

(8). N(x) +‘é g’ + K

(A). Fach of the specified excitation-functions must be an N-
Function.
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(B). The given partitioning of P-space will define a set of mul-
tipliers analogous to those we have used above, though not
necessarily univocally; and throughout every given region
I’y these multipliers will have a Single value-distribution
M1 » 2. Moreover, for every such distribution mp,, 7.
such that no pair a; , §; are simultaneously zero, there is a
corresponding region I'y. Then the condition is that, for
some admissible set of multipliers, every region I'y whose
specified excitation functions are not all constant must
have at least one pair of multipliers a; , , simultaneously
unity.

In particular, given these conditions, it is possible to find a set of
independent networks each of which consists of n simple circuits with
one common synapse {we shall term these networks, which contain
just one third-order synapse rosettes), such that &N arises by run-
ning chains from the centers of the rosettes to various designated
points outside: but none back, so that the state of the whole network
is determined by the states of the separate rosettes independently. We
shall call networks of this kind canonical networks.

In the proof, it will evidently be enough to construct a separate
such & for each dimension of P-space separately, since the & of the
theorem is then the aggregate of these separate sub-networks.

Now to every network function

'(x+1)
'(z+1—r)T(r+1)

v Mg r
Ni(x) =3 S puja*a%; + Spr b+ b
k=0

j=1 k=0
in normal form we may correlate a set of polynomials in E
¥ (E) = EM(E — an)m(E — @)k (B = aw)b,

which differ among themselves only in a zero root of varying multi-
plicity ». Let a suitable such polynomial be chosen, and denote the
coefficient of E™ in it by 6,"(N,), where n is the multiplicity of its
zero root.

Consider now a given region I'; , to which our hypothesis assigns
a non-constant network-function N;, and let it have a set of charac-
teristic multipliers of which one pair, say a;, §;, corresponding to the
limits A;, Y; are both unity. Now construct a rosette R in the follow-
ing manner: if ¥;*(E) be of the n-th degree in E, R is to have
n — § circuits, Gn, Gut , *++ , Cs, having respectively n, n—1,---, 8
fibers apiece. All the circuits are to have the'same limits, namely A;
and Y;— this can evidently be secured in every chain of sufficient
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length, and here they are all longer than an arbitrary s—and the cir-
cuit G, is to have an activity parameter 4, = 6%,,(N;). We shall sup-
pose that By = o; + = pis, o: being the external stimulation at the cen-

7
ter of R ; but o; and the u;; may be otherwise arbitrary.
Now consider the course of activity in R . By the appropriate
case of equation (2) above, we find for this the equation

[éw(z\n)m]yi: W (E)y: =B, (12)

where y; is the excitation at the center of R. As before, we find the
solution of this to be

Yi= 27 MEH Pigta;F + é ¥
=1 k=0 =0
Y (E) r'z+1)
+{BR[(E“1)’]E=1}F(x+1—r)11(7~+1)’ (13)

which becomes N;(t) when we set
Be,=b/[Y(E)/(E —1)7] p.

We shall suppose that rosettes R; have been constructed in this man-
ner for every region I'; with a paira; =8, = 1.

Suppose now that =, , @, is the multiplier-distribution for I';,
and consider the function

@;:i szIh 1—o)(1—8) ; jg“ a; Bj. (14)

Evidently, for the set of values for the multipliers i, , 7, , @; is unity,
while for any other such distribution, it vanishes. @; may be written
out as 2 polynomial:

D=3 W,y 0tz jm B Bro >+ Bin,y (15)
ik

in which every Wy—=* 1.

The reader will easily see that if any two chains ¢, , ¢, have limits
Ay, Yu; Ay, Y., respectively, and corresponding multipliers a,, 8, and
oq, By, the result of putting them in series has the multipliers o, «,
and 8, B,. It follows that taking each term on the left of equation
(12), say Wi @ 0z = 0 Brx Bre <+ Pen, We may construct a chain
¢ whose lower multiplier is az, ose +++ O i --- Bin; and we shall as-
sign to it the activity parameter Ay, = Wi, and a uix =0 .

Now, taking the center of some one R; of the constructed ro-
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settes, say a synapse s;, and an arbitrary external synapse s, con-
nect a chain ¢ of this kind from s; to s; for each term on the right of
equation (15). By the definition of &;, the excitation at s, will then
be the same as at s; when the multipliers have the distribution ., ,
7, ; otherwise it will vanish. Now, if we connect every rosette R;
to s; in this manner, then whenever we are in some region I'; with a
multiplier-distribution n;, , n.., we shall have . = N;(¢), which is
the N-function required in the hypothesis. If, however, we have y; =
constant in I'; , we can have simply a single synapse s;, with a suit-
able external stimulation, connected to si in the same manner, instead
of a rosette; and this will give the proper results at 8, . Since we can
make a construction of the above type for every dimension of P-space,
the theorem follows. In particular, it will be noted that by this meth-
od we may distribute equilibria of various types among the regions
subject only to the conditions of the theorem. The necessity of the
condition (A) of the theorem will be found evident.

We may conclude by noting an immediate

COROLLARY

Given any finite network N , it is possible to find a set of inde-
pendent rosettes such that the excitation function of N for every re-
gion 18 a linear combination of those of the rosettes—i.e., we can re-
duce any network to a canonical network having the same excitation
function.

In an intended sequel we shall consider the extension of results
of the above type to networks governed by the two-factor excitation
theories, instead of the present simplified linear model. We shall there
develop the subject primarily from the standpoint of the inverse net-
work problem, since it seems probable that it is here that the most
fruitful and practically useful results are likely to be obtained.
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