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The construction of a theory of activity in neuron networks of ar- 
bi t rary topological structure is commenced under the linear excitation 
hypothesis: we consider conditions for possible steady-state equilibria, 
deferring a dynamical t reatment  to the sequel. 

I. Introduction and Preliminary Definitions. 
In four previous papers published in this Bulletin (1941a, b, c, 

1942 ; to be hereinafter referred to as I, II, III, IV respectively) A. S. 
Householder has considered the nature of steady-state activity in 
nerve-fiber networks under constant stimulation, and has derived de- 
tailed results for several specific types of networks. The following ob- 
servations will t reat  this same problem, and will presuppose for their 
understanding a reading of the papers mentioned. Our purpose in 
particular will be to develop a somewhat different approach to the 
question; we shall show how this alternative procedure enables us 
both to calculate explicitly all the patterns of steady-state activity 
which are consistent with the applied stimulation in the most general 
possible network--albeit by a rather  laborious procedure--and to lay 
the groundwork for a theory of transient excitation. 

We shall make an assumption with regard to the activity of a 
fiber as a function of stimulation which is slightly more general than 
the simple linearity of I, II, III, and IV: we shall suppose that, as the 
stimulation increases, the fiber remains inactive until the threshold is 
reached, then for some range it is a linear function of the excess of 
the stimulation over the threshold; and finally when the stimulation 
reaches a certain upper limit, the resulting excitation has a constant 
value for this and all greater stimulations. This hypothesis seems in 
better agreement with the customary suppositions than that  of simple 
linear increase above the threshold, while it occasions us no fur ther  
theoretical difficulties. In particular, the reader will perceive the per- 
durable validity of lemma 1 of Pitts 1942 (hereinafter referred to as 
V) which, indeed, requires little more than that the excitation func- 
tion should be continuous and monotone. 
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In a given network $~, which it is convenient to suppose is not a 
simple circuit, we may usefully classify the synapses into three groups. 
The first-order synapses will be those which join links in a simple 
chain, having jus t  one afferent and one efferent fiber; the second-order 
synapses are simple branch-points, with one afferent and several el- 
ferent  fibers ; and the third-order synapses, representing convergence- 
points, possess several afferent and one or more efferent fibers. We 
may simplify ~ ,  without  changing its activity properties essentially, 
by removing all the second-order synapses;  this may be accomplished 
in the following way. I f  s~ be such a synapse, say with n efferent 
fibers d~, d~, ... dn, follow the afferent chain to s~ contrary to its 
sense until the next preceding second or third-order synapse, say s j ,  
is reached. Construct n simple chains of fibers such that, for  any p ,  
the p-th fiber in any of them has the same threshold and activity para- 
meter  as the p-th fiber on the chain between sj and s i .  Strike out s~ 
and the chain from ss to s~, and connect instead the afferent end of all 
the constructed chains to s j ,  and each one of the n efferent ends to 
one of the n fibers which formerly began at s i .  Repeat this process 
until no second-order synapses remain. The result will be a network 
~ '  which consists of say P third-order synapses, interconnected by 
some Q simple chains. These synapses may  be enumerated as s~, 
s2, . . . ,  se ,  and the chains as Cl, c2, . - . ,  cQ. Henceforth,  we shall use 
the term 'synapse' to mean ' third-order synapse', when not otherwise 
specified. 

The topological s t ructure  of $~', regarded as a complex of chains 
and synapses, may  be represented by two functions of integers in the 
following way. ~ ( i ,  ]) - -  r is defined to be unity if the chain vi 
leads to the synapse s~i; otherwise it is zero. w( i ,  ]) - -  ~ j  is unity if  
the chain c~ leads from the synapse s j ,  and otherwise zero. The read- 
er will have remarked that  if we consider the chains c~ as 1-com- 
plexes and the synapses si as 0-cells in a linear graph, the orientation 
matr ix  2 of ~ '  is I1~ol} - I]~iJll ; while conversely, given a S, we may  
obtain I Ir and hence ~ by replacing all negative entries with zero; 
and I[~-I[ by nullifying positive entries and multiplying by --1. 

Various metrical  characteristics of the chains c~ will be impor- 
tant. Among these are the number  of fibers in c~, to be denoted by 
'~ ' ;  the product of the activity parameters  of fibers of c~, to be desig- 
nated by 'A~'; and the quantities ~ ,  defined thus: let a be the exter- 
nal stimulation at  the s-th synapse of c~ (counting its origin as the 
first),  less the threshold of the succeeding fibers, and p~, p~, ... , p~, 
the activity parameters  of the fibers of c~, in order:  ~ is then 
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Pv,%,v, + Pv, Pv,-1%,~,-I + "'" + A~ ~ , i .  

The ~i correspond to the quantities e~r used for the simple circuit in 
I, If, Ill,  and IV. Next, we shall require the quantities y i ,  which will 
be employed in a slightly different usage than in I, II, III, and IV: y~ 
will be the total activity at the synapse s~, diminished by the value of 
at for this synapse. Further,  given a chain e~ leading from ~j to s~, 
we shall define A~ as the greatest lower bound of the values of yj 
which set e~ into complete activity with the given pattern of external 
stimulation at the synapses within c~, and Y~ as the least upper bound 
of such values. With respect to each chain c~, moreover, and the 
synapse sj whence it leads we may specify a pair of quantities, m ,  fl~, 
to be called the multipliers belonging to that chain. We shall set 
m - -  l i f y j  ->_ A~; o t h e r w i s e a i : 0 .  I f y j  > u otherwise 
#~ ~ 1. Clearly, its multipliers characterize the state of c~ complete- 
ly: in particular, c~ is in complete activity if and only if m fl~ --  1. 

We may observe first that  the state of a network ~ over a period 
of time is determined completely by the value of the y~ at its third- 
order synapses during that interval; this follows, by a remark made 
in I, from the circumstance that  all other synapses are connected to 
a third-order synapse by a simple chain. If, then, we regard the values 
of these yi as components of a point-vector ?~ in a suitable P-space, 
the motion of that  point is precisely correlated to changes in the state 
of the network. This representation will be found decidedly usefu l ;  
we may extend it as follows. Along any coordinate axis y~ corre- 
sponding to the excitation at s~, we erect perpendicular hyper-planes 
corresponding to the values Ai, A~, A~, ... , A~; Yj, Y~, . . . ,  Y~ of 
y~, where cj, c~, . . . ,  c~ are the chains leading from s~. The totality 
of such planes will divide the whole P-space into boxes or compart- 
ments, each of which will be called a region. Each region Fp corre- 
sponds to a single activity pattern for the chains of ~(; we shall see 
that  the path of the point ~, as it moves concomitantly with variation 
in the state of 2(,  has no corners within a region, and only, if at all, 
on the boundaries. 

Thus to every region/ 'p  there is assigned a unique distribution 
of the values zero and one for the multipliers of chains of P(, which 
holds for ~ whenever ?) is in Fp; and conversely, for every set of 
values for the multipliers which makes no pair of them concomitantly 
zero, we may correlate a unique region. Given Fp, we shall specify 
its multiplier-distribution by the pair of sets np,, np~, where np~ con- 
talus all multipliers which vanish in Fp, and up, those which are unity 
there. 
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We may call a point x of P-space an equilibrium point of $~ if 

there exist a steady state of ~ determined by y = x and consistent 
with the given external stimulation. A region is stable if it contain 
an equilibrium point;  otherwise unstable. It will be seen that  the 
steady-state problem treated for  various cases in I, II, III  and IV is 
essentially a problem in statics, i.e., that  of determining all the stable 
regions for  a given network having a given applied stimulus pattern. 
This we shall call the static problem; and we shall now proceed to 
find an explicit solution thereof  for  the g'eneral network $~. 

11. The Static Netwo,rk Problem. 
Consider the stimulation at a synapse s~ in the steady state. I t  

will, in general, be the sum of several types of contribution. First ,  of 
course, we have the external stimulation ~ applied at s~. Second, 
there is the contribution of the chains leading to s~: this may be com- 
puted as follows. Certain of these chains,  say c~, % ,  -.. , c~,, will 
be in complete activity and will consequently deliver an excitation 
A q  Yt,~o~ + ~o, where Sc~ol is the synapse where  c.o commences. An- 
other group of chains,  say c~,+~ , ... , c ~ ,  which are not in complete 
act ivi ty,  will deliver generally an excitation A~0 ,,x~ + ~ ;  and the re- 
mainder ,  c~+, , ... , Q ,  will contribute an amount A~o Y~o + /~o. 
Adding these, we obtain 

b H K L 

y~=Y~l~ + ~ A ;  Y ~  + Y~ A~ A~j + ~ A~jY~,. (1) 
j=l j= l  ]=H+I j=K+1 

I f  we recall some of the quantities defined earlier, we shall be 
able to wri te  (1) more compendiously as 

Y ~ : ~ , { ~ j i u j +  ~y'jk ~i~aJflJA tyk + Ajo~i [ A i ( 1 - a j )  
j k 

+ Yj(1 - & ) ] } ,  
(2)  

where the summations are now taken over all chains and all synapses. 
The apparent  extra  terms which are  in (2) but  not in (1) vanish 
through a zero value for  some of the multipliers, the r or the ~jk. 

An equation of the kind (2) may  be wri t ten for  every synapse: 
if we put  

(3) 

M = 1IF, ~i~ ~jk ai flj" A j l f ,  
J 

R =  l i e  O~(,~J +.4. [ A j ( I  - ~ )  + Y j ( I  - & ) ] ) I I ,  
i 
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we may  wri te  the system in mat r ix  form as 

( I  - M ) 9 =  R . ( 4 )  

We shall suppose for  the moment  tha t  the mat r ix  I - M is non-singu- 
lar, and re tu rn  presently to cases where  this does not  hold. Under  this 
hypothesis, the system (4) may be solved formally for  the y~, t rea t -  
ing the unknown a's and fl's as indeterminates,  by Cram6r's  rule:  this  
yields a set of expressions for  the y~ which are  the  quotients of poly- 
nomials in the multipliers with known coefficients by the  de te rminant  
II - MI: 

1 
Y~--  - -  Z R j[ I  - M]~s, (5) 

II - M] j 

where  [I - M] ~j is the  co-factor of the element i,] in I - M .  
Now it is clear tha t  any given distr ibution no,,  np~ of  the multi-  

pliers will determine a stable region if and only if the values for  the 
y~ resul t ing by substi tution of the given a's and fl's in (5) sat isfy the 
inequalities involved in the definitions of the multipliers, in particu- 
lar, if  cz emanate  f rom s~, then the inequalities 

1 <> 
Y ~ - - } M  ~ E R j [ I ] I  - M]~j _: A~ (6) 

- -  j 

must  hold respectively as a~ e n a or az e npl , wi th  a simiIar set for  
the fl's. These requirements  may  be expressed conjointly by 

(2  az - 1 ) y i  > (2  at - 1 ) A t  
(7) 

(1  - 2 flt)Y~ > (1  - 2fl~)Yz 

for  all such ] and l ,  which is 

V~J (2 a~ - 1)R~II - MI~ 

- E (2  a~ - 1)~,~j A~ > 0 
h i - M 1  

(8) 
X't ' , ; (  1 - 2 f l ~ ) R ~ l I -  MIJk 
i,k 

- Y (1  - 2 ~ ) V , ~  Y~ > 0 .  
l I -  MI j 

The requirements  (8) thus form necessary and sufficient condi- 
tions tha t  a set of a's and fl's should determine an equilibrium point. 
They may  be replaced by a set which is mult i l inear  in the  multipliers, 
by making successively the assumptions tha t  II - M I i spos i t ive  and 
tha t  it is negative, mult iplying by this de te rminant  in (8) , a n d  adding 
the corresponding supposition to the set of  mult i l inear  inequalities 
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so generated. Higher  powers of the a's and fl's need not occur in 
these, since they may always be reduced to linear occurrences by re- 
member ing a~ .* = a~, fl~ - -  fl~. The resulting conditions will then have 
the form 

P( ' )  a , , - . ,  flirt- 1 fig2 -." /~gl + H~,~ > 0 .  I I , K |  ~ I 1  (112 " " " 
l l j K !  

(9) 

Since the number of multipliers altogether is finite, and each of them 
assumes only the two possible values 0 and 1, the set (9) may always 
be solved in any part icular  case by substituting in (9) all the possible 
value distributions, and rejecting all which do not fit. There are  3~ 
such distributions altogether, Q being the number  of chains, so that  
the labor might  be supposed very grea t ;  but in practice the vast ma- 
jor i ty  of possible distributions may be found to sat isfy or fail to satis- 
fy  (9) by inspection. In any case, the problem is one primari ly of 
computat ion;  the explicit solutions are  not required to deduce the 
general properties of neuron networks, and consequently, while un- 
doubtedly desirable, an expeditious numerical method is not to be re- 
garded as an essential part  of the problem; the more so in that  discus- 
sions such as our own have as their  principal object the enunciation 
of general propositions as to types of possible activity, ra ther  than 
practical application to specific networks. We may remark,  inciden- 
tal ly,  tha t  of the distributions ~p,, rip2 which sat isfy (11) ,  those which 
require both members of some pair  a i ,  flj to vanish may be discarded 
immediately, as corresponding to no region Fp.  This is the source of 
the number 3 ~ given above for  the number of possible distributions. 

We may  re turn  now to the case where II - M I vanishes, either 
identically or for  certain part icular  multiplier-distributions. Given 
such a distribution n, , ,  np~, we may  distinguish two cases. In the first, 
the matr ix  produced by adding R as an additional column to I - M, 
(into which we have substituted the values assigned by np,, np2 to the 
multipliers) has a greater  rank than I - M itself. In this case the 

equations (4) are inconsistent, no vector x of Fp satisfies them, and 
there is accordingly no equilibrium point in Fp. The second case, 
where the augmented matr ix  has the same rank as I - M itself, is 
more interesting. If  q be the nullity of I - M,  q of the variables y~ 
may be chosen arbitrari ly,  and the equations (4) will then suffice to 
determine values for  the remaining coordinates such that  the constel- 
lation fixes an equilibrium-point. In this case, therefore,  instead of 
having a single equilibrium point in the region, we have a q-dimen- 
sional locus of them, so that  even knowledge of both the activity pat- 
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tern  and the applied st imulation does not enable us to find the steady- 
state excitation in a unique way. We shall see later, in considering 
the dynamical  network-problem, tha t  under these circumstances the 
asymptotic behavior of the system is determined essentially by the 
initial position of the network-vector. 

This work was aided in par t  by a grant  f rom the Dr. Wallace C. 
and Clara A. Abbott Memorial Fund of the Universi ty of Chicago. 
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